RESEARCH IN SVALBARD 2004

A yearly information bulletin based on contributions from scientists working in Svalbard
© The Research Council of Norway

Title: Research in Svalbard 2004
Editor: Kjell Tore Hansen, Svalbard Science Forum, Longyearbyen
 Are Bjørdal, Norwegian Polar Institute, Tromsø
ISBN: 82-12-01972-1

Order additional copies from:
 Svalbard Science Forum
 P.O.Box 506
 N-9171 Longyearbyen
 Norway

Tlf: (+47) 79 02 26 16
Fax: (+47) 79 02 26 04
E-mail: ssf@lby.npolar.no

You will be able to view and print the bulletin from: http://www.npolar.no/ris
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>Some Statistics</td>
<td>7</td>
</tr>
<tr>
<td>Project Reports for Biology</td>
<td>11</td>
</tr>
<tr>
<td>"Digestibility of ice algae and phytoplankton: The potential impacts of changing food supply to the arctic benthos" (Marine Ecology)</td>
<td>11</td>
</tr>
<tr>
<td>"On Thin Ice? Climatic Influence on Energy Flow and Trophic Structure in Arctic Marine Ecosystems" (Marine Ecology)</td>
<td>13</td>
</tr>
<tr>
<td>Environmental effects of offshore oil activities: Experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels (EXPAC) (Marine Ecology)</td>
<td>15</td>
</tr>
<tr>
<td>Description of parameters of the population dynamics of polar bivalve communities, first year: growth and reproductive cycle of the dominant Greenland cockles (Serripes groenlandicus) (Benthology)</td>
<td>17</td>
</tr>
<tr>
<td>Food in the Arctic pelagic system, its role in the diet of filter feeders, and fertilisation by exudates: an experiment in situ (Benthology)</td>
<td>19</td>
</tr>
<tr>
<td>Succession of benthic communities in polar environments: Benthic resilience in polar environments: a comparison (Benthology)</td>
<td>21</td>
</tr>
<tr>
<td>UV effects on marine macroalgae (Marine Botany)</td>
<td>23</td>
</tr>
<tr>
<td>Adoption in Geese - an adaptive strategy? (Biology)</td>
<td>25</td>
</tr>
<tr>
<td>Goose breeding ecology: overcoming successive hurdles to raise goslings (Biology)</td>
<td>27</td>
</tr>
<tr>
<td>Combined effects of goose grazing and climatic warming on vulnerable tundra ecosystems (Biology)</td>
<td>29</td>
</tr>
<tr>
<td>Metabolic and hormonal correlates of reproductive effort in the kittiwake (Ecology)</td>
<td>32</td>
</tr>
<tr>
<td>Incubation behaviour and energetic strategy during reproduction in long-lived birds: Ecological and physiological aspects (Ecophysiology)</td>
<td>34</td>
</tr>
<tr>
<td>Snow Algae in Svalbard (KOL 07) (Biology and Ecology)</td>
<td>36</td>
</tr>
<tr>
<td>Arctic and Alpine Stream Ecosystem Research (AASER) (Freshwater Ecology)</td>
<td>38</td>
</tr>
<tr>
<td>Biology and ecology of aphid populations in arctic environment: relationships between endemic and introduced species, adaptive strategies and population genetic structure (Population Biology)</td>
<td>40</td>
</tr>
<tr>
<td>Physiological acclimation of Arctic macroalgae along vertical stress gradients (Marine Botany)</td>
<td>42</td>
</tr>
<tr>
<td>Inventory of the Horsund fjord marine fauna and flora (Marine Ecology)</td>
<td>43</td>
</tr>
<tr>
<td>The effect of solar UV on lipids in the planktonic food chain of polar freshwater ponds. (Biology)</td>
<td>44</td>
</tr>
<tr>
<td>CABANERA-Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change (Marine Ecology)</td>
<td>45</td>
</tr>
<tr>
<td>The role of climatic variation in the dynamics and persistence of an Arctic predator-prey/host-parasite system (Ecology)</td>
<td>47</td>
</tr>
<tr>
<td>Bioavailability and effects of organochlorine contaminants in relation to seasonal lipid cycles in arctic fox. (Ecotoxicology)</td>
<td>49</td>
</tr>
<tr>
<td>Arctic fox den monitoring on svalbard (Biology and Ecology)</td>
<td>51</td>
</tr>
<tr>
<td>Svalbard reindeer monitoring, Brøggerhalvøya (Ecology)</td>
<td>53</td>
</tr>
<tr>
<td>Hydroacoustic (EK-60) survey of pelagic fish and invertebrates in Kongsfjorden (Marine Ecology)</td>
<td>54</td>
</tr>
<tr>
<td>Population monitoring of Svalbard Rock Ptarmigan (Lagopus mutus hyperboreus): point count survey of territorial males in spring. (Biology and Ecology)</td>
<td>55</td>
</tr>
<tr>
<td>Effects of organohalogen contaminants on the metabolic systems and thyroid functions of glaucous gulls (Larus hyperboreus) from Bjørnøya (Ecotoxicology)</td>
<td>56</td>
</tr>
<tr>
<td>Effects of climate change on ecosystems in Svalbard: past and future immigration of thermophilous key species (Botany)</td>
<td>58</td>
</tr>
<tr>
<td>Monitoring rabies, parasites and diseases in the arctic fox population on Svalbard (Biology and Ecology)</td>
<td>60</td>
</tr>
<tr>
<td>Spatial population/ metapopulation structure of the arctic fox within the Svalbard archipelago. (Biology and Ecology)</td>
<td>62</td>
</tr>
<tr>
<td>Reproductive biology of the snow bunting, Plectrophenax nivalis (Zoology)</td>
<td>63</td>
</tr>
</tbody>
</table>
Plant-herbivore interactions in an Arctic pre-breeding area for geese: effects of timing and foraging intensity (Ecology) 65
Germinable seed bank diversity at high altitudes on Svalbard and implications to vegetation population dynamics with climate change (Botany) 66
Some aspects of life strategies of marine ostracods and copepods from northern fjords and Nottinghambukta (SW Spitsbergen). (Biology) 68
Density dependent regulation of barnacle goose numbers (Ecology) 70
Investigation of the physiological and cellular adaptation of higher plants and snow algae to the arctic environment. (Botany) 72
Effects of UV radiation on lipids, fatty acids and nutritional quality of Arctic marine algae and zooplankton (Marine Biology) 74

Project Reports for Geology 76
"Biostratigraphy and ecological successsion of permian-carboniferous Rugosa corals from Spitsbergen" (Paleontology) 76
3D geometry of karst and fractures in carbonate buildups (Geology) 78
ECLOCAL Prog IPEV 398 (Geology) 80
Paraglacial geomorphology (Geomorphology and Glaciology) 82
Geotectonic and paleogeographic evolution of the Southern Spitsbergen based on the palaeomagnetic investigations of Paleozoic and Triassic rocks from the Hornsund region. (Paleomagnetism) 84
Genesis of hydrothermal mineral deposits in Svalbard (Geology) 86
Lower Palaeozoic sedimentology and stratigraphy of NE Svalbard (Geology) 87
Polar Karst (Geology) 88

Project Reports for Geophysics 89
Spectrograph Imaging Facility (SIF) (Physics) 89
Seismological Station at Ny Ålesund (Seismology) 91
Heat and mass transfer in permafrost affected soils (Hydrology) 92
KOL 02c. Trace gas measurements by Fourier Transform Spectroscopy (NDSC) (Geophysics) 94
KOP 74, Observation of greenhouse gases by FTIR spectrometry (SOGE) (Geophysics) 96
KOP 67, Validation of the SCIAMACHY satellite instrument by ground-based FTIR spectrometry (Geophysics) 97
Polarstern Cruise ARK XX/2 (Oceanography) 99
The meteorological conditions and climatic modifications study in Spitsbergen (Meteorology) 101
EPIS (Atmospheric Physics) 103
Water, sediment and solute fluxes from the Midre Lovenbreen basin (Glaciology) 104
Allsky cameras in Longyearbyen and Ny Alesund (Geophysics) 106
Chemistry of size-fractionated atmospheric aerosols at the Zeppelin mountain station, Ny-Alesund (Atmospheric Chemistry) 107
Chemistry of mercury in polar areas (CHIMERPOL) (Chemistry) 109
Climate affecting substances in the Arctic (Atmospheric Science) 111
ISPOG - Internal Structure and Bedrock of the Polythermal Glaciers in SW Spitsbergen (Glaciology) 113
ITACA² - twin 76-ilat auroral monitors (Space Physics) 114
AREX 2004 (Oceanography) 116
Investigations of perennial springs on Spitsbergen (Hydrology) 117
Mass balance of glaciers between Aavatsmarkbreen and Dahlbreen with detailed investigations of Waldemarbrein and Irenebreen (Glaciology) 118
Svalbardtök 2004 (Hydrographic Survey) 120
Monitoring Heavy Metals and Organic Pollutants in Air at Svalbard (Atmospheric Chemistry) 121
Automatic Weather Stations (Meteorology) 122
Parameterisation of snow and ice albedo in the ECHAM5 General Circulation Model (GCM). (Glaciology) 123
Massbalance of glaciers in Svalbard (Glaciology) 125
Solar Radiation Monitoring at Sverdrup Station, Ny-Ålesund (Atmospheric Physics) 127
Permanent observations of changes of terrestrial geophysical fields and enviromental monitoring (Geophysics) 128
Tenth Czech Glaciological Polar Expedition , Spitsbergen 2004 (Glaciology) 130
Ice ridges ion the Barents Sea (Ice thermomechanics and ice morphology) 131
Sea ice formation and growth in the Van Mijen fjord (Ice thermomechanics and ice morphology) 132
Ice physics and crystal structure (Ice physics) 133
KOP 60, Tropospheric aerosol observations by FTIR spectrometry (Geophysics) 134
Lomonosovfonna Ice Dynamics (Glaciology) 135

Project Reports for Other Disciplines 137
Climate gas monitoring at the Zeppelin Station (Climate gases) 137

Appendix 1: Address List 138
Appendix 2: RiS’ Map With Geographic Zones 145
RESEARCH IN SVALBARD 2004

- information about ongoing scientific projects -

This year’s “Research in Svalbard” is the 23 in a row. The intention of the bulletin is to provide information about ongoing scientific work in the Svalbard region, and to assist the scientists involved in exchanging information about their projects, in order to obtain additional information or to co-ordinate field activities. In 1998, the Research Council of Norway established Svalbard Science Forum (SSF) in Longyearbyen. The aim is to give information about Svalbard as a science platform and to assist scientists and organisations in Svalbard with practical matters. SSF is the publisher of this year’s bulletin. Please be aware that the registration of field projects is on a voluntary basis. This means that some projects may not be registered. We also would like to draw the reader’s attention to the fact that the registration deadline is prior to the start of the majority of the field projects, and therefore planned projects have been registered. In spite of these limitations, it is our impression that the contents are fairly accurate in terms of distribution between nations, disciplines, and geographic areas. Registration forms for this publication have been registered into our database as they have been received. Svalbard Science Forum holds no responsibility for the information given. The database is also available via our Internet page http://www.npolar.no/ris/ where updated information will be presented. We are grateful to all who have contributed to making this year’s “Research in Svalbard” as complete as possible. Please contact Svalbard Science Forum should you require further information. For entries to the 2005 edition, please look at our web page at the end of this year.

Longyearbyen, June 2004

Kjell Tore Hansen
Research Coordinator SSF
Some statistics

Based on the information stored in our database we have compiled the following statistics. Since registration is volunteer and since we have no way of knowing if the projects have been carried out, the information here is only an approximate description of the research activity in Svalbard today.

Total Number of registered Research Projects in Svalbard in 2004

This year we have received descriptions for a total 78 projects from 15 nations, including multinational projects.

Table 1. The number of registered research projects in Svalbard pr. discipline and nation.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Biology</th>
<th>Geology</th>
<th>Geophysics</th>
<th>Other</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Canada</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Finland</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Germany</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Holland</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>International</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Italy</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Norway</td>
<td>15</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Poland</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Russia</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sweden</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>USA</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Grand Total</td>
<td>33</td>
<td>9</td>
<td>35</td>
<td>1</td>
<td>78</td>
</tr>
</tbody>
</table>

1) Biology includes projects in Ecology, Ecotoxicology, Botany, Ornithology, and Zoology.
2) Geology includes projects in Geography, Geomorphology, and Soil science.
3) Geophysics includes projects in Atmospheric Chemistry and Physics, Geomagnetism, Hydrology, Glaciology, Hydrography, Meteorology, Oceanography, and Radioactivity.
4) Other includes projects in Archaeology, History, Arctic Technology, Topography, and Geodesy.
Figure 1. The number of registered research projects in Svalbard in 2004 pr. nation.

The number of registered research projects in Svalbard 1992-2004

The total number of projects varies from year to year. Since the registration is voluntary we do unfortunately not receive information about all projects in the region. The following tables, therefore, only show a summary of the projects listed in each year's RiS bulletin.

Table 2. The number of registered projects in Svalbard for each main discipline.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Biology</th>
<th>Geology</th>
<th>Geophysics</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>155</td>
<td>48 (31%)</td>
<td>23 (15%)</td>
<td>73 (47%)</td>
<td>11 (7%)</td>
</tr>
<tr>
<td>1993</td>
<td>115</td>
<td>51 (44%)</td>
<td>12 (10%)</td>
<td>48 (42%)</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>1994</td>
<td>126</td>
<td>43 (34%)</td>
<td>18 (14%)</td>
<td>59 (47%)</td>
<td>6 (5%)</td>
</tr>
<tr>
<td>1995</td>
<td>148</td>
<td>46 (32%)</td>
<td>23 (16%)</td>
<td>71 (47%)</td>
<td>8 (5%)</td>
</tr>
<tr>
<td>1996</td>
<td>146</td>
<td>46 (32%)</td>
<td>22 (15%)</td>
<td>72 (49%)</td>
<td>6 (4%)</td>
</tr>
<tr>
<td>1997</td>
<td>132</td>
<td>41 (32%)</td>
<td>41 (32%)</td>
<td>46 (35%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>1998</td>
<td>137</td>
<td>44 (32%)</td>
<td>16 (12%)</td>
<td>75 (55%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>1999</td>
<td>142</td>
<td>58 (41%)</td>
<td>15 (10%)</td>
<td>68 (48%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>2000</td>
<td>105</td>
<td>44 (42%)</td>
<td>10 (9%)</td>
<td>50 (48%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>2001</td>
<td>107</td>
<td>34 (32%)</td>
<td>14 (13%)</td>
<td>59 (55%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2002</td>
<td>106</td>
<td>36 (34%)</td>
<td>16 (15%)</td>
<td>52 (49%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>2003</td>
<td>110</td>
<td>44 (40%)</td>
<td>14 (13%)</td>
<td>49 (45%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>2004</td>
<td>78</td>
<td>33 (42%)</td>
<td>9 (12%)</td>
<td>35 (45%)</td>
<td>1 (1%)</td>
</tr>
</tbody>
</table>
Figure 2: The distribution of registered projects in Svalbard in 2004 in the geographic zones. The map in Appendix 2 indicates the zone division.

Table 3. The number of registered projects in Ny-Ålesund for each main discipline.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Biology</th>
<th>Geology</th>
<th>Geophysics</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>59</td>
<td>24 (41%)</td>
<td>4 (15%)</td>
<td>28 (47%)</td>
<td>11 (7%)</td>
</tr>
<tr>
<td>1993</td>
<td>38</td>
<td>20 (53%)</td>
<td>0 (0%)</td>
<td>18 (47%)</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>1994</td>
<td>64</td>
<td>24 (38%)</td>
<td>1 (2%)</td>
<td>39 (61%)</td>
<td>6 (5%)</td>
</tr>
<tr>
<td>1995</td>
<td>58</td>
<td>19 (32%)</td>
<td>8 (13%)</td>
<td>31 (53%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1996</td>
<td>62</td>
<td>21 (34%)</td>
<td>5 (8%)</td>
<td>36 (58%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1997</td>
<td>60</td>
<td>24 (40%)</td>
<td>7 (12%)</td>
<td>29 (48%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1998</td>
<td>48</td>
<td>18 (38%)</td>
<td>1 (2%)</td>
<td>29 (60%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>1999</td>
<td>58</td>
<td>23 (40%)</td>
<td>2 (5%)</td>
<td>32 (55%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2000</td>
<td>57</td>
<td>24 (42%)</td>
<td>3 (5%)</td>
<td>30 (53%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2001</td>
<td>39</td>
<td>12 (31%)</td>
<td>2 (5%)</td>
<td>25 (64%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2002</td>
<td>46</td>
<td>14 (30%)</td>
<td>3 (7%)</td>
<td>28 (61%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>2003</td>
<td>56</td>
<td>21 (38%)</td>
<td>3 (5%)</td>
<td>30 (54%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>2004</td>
<td>40</td>
<td>21 (53%)</td>
<td>1 (2%)</td>
<td>17 (43%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>
Figure 3: The number of registered projects in each Svalbard settlement in 2004 for each main discipline.

Listing of project reports starts on next page
In Arctic marine ecosystems, primary production is partitioned between ice algae and phytoplankton. Reduced thickness and extent of sea ice associated with climatic shifts will likely lead to changes in the relative proportions of these two components to total primary productivity. There are potentially significant implications of such changes to benthic communities, which are totally dependent upon sedimenting organic matter from the overlying water column for their energetic requirements. To date it has been assumed that because both ice algae and phytoplankton are dominated by taxonomically similar species (e.g. diatoms and flagellates), both sources of food are identical in quality. Several indirect observations challenge this assumption. However, the comparative roles of ice algal- and phytoplankton-derived organic matter to the energetics of benthic species and communities has never been quantitatively addressed. We propose to investigate whether there are differences in the digestability of ice algae and phytoplankton-derived organic matter to Arctic benthos. We have designed a series of ship-board and land-based experiments to identify patterns of differential selection, absorption, and assimilation of ice algae and phytoplankton on whole benthic communities and selected dominant taxa, and we will carry out simultaneous, identical experiments in Svalbard and Alaska in order to assess whether results are region-specific or pan-Arctic in nature. This proposed project compliments and will derive synergistic benefits from two funded projects: ARKTOK, funded by the Norwegian Research Council in Norway, and a recently-funded NSF project in Kotzebue, Alaska. The principal objective of this project is to experimentally determine whether there are differences in the digestibility of ice algae and phytoplankton-derived organic matter to Arctic benthic communities.

Results

Previous fieldwork/cruises:
12-26 May, RV Jan Mayen - Norskebanken, Fram Strait, Kongsfjorden
10 Aug-6 Sept., RV Lance - Kongsfjorden, Norskebanken, Sofia Deep, Hinlopen Strait, Erik Eriskens Strait, Knivøya, Polar Basin

Results under analysis

Geographical Area(s)
Hopen
Longyearbyen
Ny-Ålesund
Barents Sea

Participants
Biology

Project Leader

Dr. Michael Carroll
Akvaplan-niva,
Tromsø, Norway

Participating Scientist

Kelton McMahon
State University of New York,
Stonybrook, USA

Participating Scientist

Glenn Lopez
State of New York University,
Stonybrook, USA

Field Leader

Dr. William G. Ambrose
Bates College,
Maine, USA
The principal objective of this project is to determine the sensitivity of the Arctic marine ecosystem of northeast Spitsbergen to changing climate via sea ice cover in this region. This will be accomplished through the following subgoals:

· Quantify the timing and magnitude of primary production and its dominant sources for the northern Svalbard shelf
· Trace the trophic fate of the primary production in areas of different zooplankton population distributions
· Measure benthic biomass and community characteristics in the areas
· Relate the changes of carbon available both in quantity and origin to variations in ice conditions
· Determine food web trophic structure and response to climate variability using stable isotope and fatty acid profiles

We aim to test the hypothesis that changing ice conditions associated with different climatic regimes drives primary production on the northern Svalbard shelf through different carbon sources (ice algae vs. phytoplankton). We propose that such variation in the dominant source pathways of primary production has concomitant effects to both the pelagic and benthic systems, as well as the trophic pathways by which they are coupled. We will carry out an extensive field campaign, combined with laboratory analyses to test a series of working hypotheses related to the primary producers, zooplankton, and benthic components. Our test region is the northern Barents Sea near northeast Spitsbergen where sea ice varies on small spatial and temporal scales. We will compare systems influenced predominantly by different water masses, i.e. Atlantic water (warm scenario) vs. Arctic water (cold scenario) and we will assess temporal aspects by sampling in different seasons (i.e. spring vs. autumn) and in different years.

Ultimately, this study aims to provide insight into the energetic pathways and trophic structure of this ecosystem and its stability versus sensitivity in the face of predicted future climate changes.

Results
Previous fieldwork/cruises:
12-26 May, RV Jan Mayen - Norskebanken, Fram Strait, Kongsfjorden
10 Aug-6 Sept., RV Lance - Kongsfjorden, Norskebanken, Sofia Deep, Hinlopen Strait, Erik Eriskens Strait, Kvitøya, Polar Basin

Results under analysis.
Biology

Austfonna
Hopen
Longyearbyen
Barents Sea

Participants

Project Leader
Dr. Michael Carroll
Akvaplan-niva,
Tromsø, Norway

Field Leader
Dr. Else Nøst Hegseth
University of Tromsø (UiT), Norges Fiskerihøgskole (NFH)
Tromsø, Norway
This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Identify effects to benthos from routine releases of drill cuttings and acute spills of petroleum-associated chemicals in diverse regions of Norway.

1. To develop hypotheses on impacts to the benthos from petroleum operations in higher latitudes.
2. To identify benthic community responses to routine discharges of drill cuttings and to evaluate effects on benthic organisms (organism- and cellular-level) from acute spills of petroleum-associated chemicals.
3. To propose improvements to the interpretation of benthic monitoring data from dive

Results

New project.

Geographical Area(s)

Hopen
Longyearbyen
Ny-Ålesund
Barents Sea
Biology

Project Leader

Dr. JoLynn Caroll
Akvaplan-niva,
Tromsø, Norway

Field Leader

Dr. William G. Ambrose
Bates College,
Maine, USA
Greenland cockles (Serripes groenlandicus) inhabit arctic soft bottoms. This cockle was chosen for detailed studies of one organism having presumably a dominant effect on soft sediment succession. About 10 individuals will be sampled monthly over a year’s period. Since there is no scientific diving team available throughout the year bivalves will be sampled, marked with the help of two parallel sanding discs fixed to a handhold electric driller and released in stainless steel cages. In 2003 these cages were already installed under the sediment surface in northern direction of the sheet piling of the harbour, at app. 10-meter depth that they will not interfere with the docking ships. Cages were fixed to a rope, which has been installed on the ground, turned around on a ground weight at the lower end of the sheet piling and fixed at the surface. Each month one cage will be lifted and cockles be frozen (-80°C) for further investigations (growth, reproductive cycle). At the laboratory in Bremerhaven, cockles will be measured to the lower mm and growth increments calculated (e.g. Laudien et al 2003). These parameters will be used to establish a von Bertalanffy growth function. Additionally acetate peels will be produced. The results will be needed for further investigations and age estimates from free living cockles for future campaigns. The reproductive cycle of Serripes groenlandicus will be analysed using histological methods.

During the campaign 2003 it was observed that Greenland cockles (Serripes groenlandicus) were not as abundant in the study area (Kongsfjord) as in 2002. However, an area of higher abundances was found at an area between Forlandsundet and Kvadehukken, where animals are planned to be collected for this project, if they did not recover abundances found in 2002. The working group is experienced in the analysis of population dynamics of bivalves including age estimates and histological analyses (Laudien et al. 2001, Laudien 2002, Laudien et al. 2003).
Biology

Participating Scientist

Dr. Ricardo Sahade
Universidad de Córdoba,
Córdoba, Argentina

Participating Scientist

Saskia Brandt
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

Nikolaus Probst
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

Neus Fernandez
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

Phillip Shubert
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Field Leader

Juergen Laudien
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany
The role of different food items of the arctic pelagic system in the diet of selected suspension feeders will be evaluated from in situ feeding experiments. Six transparent incubation chambers made from hemispherical pieces of acrylic glass and approximately 1 litre in volume will be used. Selected suspension feeders like the cockle Serripes groenlandicus or the octocoral Gersemia rubiformis will be collected about one week prior to the experiments and acclimated. At the beginning of each experiment individual test animals will be fixed on the base of each experimental chamber. The behaviour of the incubated specimens will be monitored with an underwater video device before and during the experiment, confirming that the animals are actively filtering. During the acclimatisation period the outlet pipe of the incubation chambers will not be connected to the pump (open flow conditions). Thereafter three replicated initial water samples will be taken from the outlet of each chamber. Then the outlet pipe will be connected to the inlet of the pump providing a recirculation of experimental water until the final water samples will be taken.

The time required to detect changes in the concentration of food sources will be determined by examining the Chlorophyll a concentration within chambers with and without test animals over a period of 3 hours at 30 minutes intervals. Capture rates of the tested animals will be calculated using the variation in the concentration levels of bacteria, nanoflagellates, ciliates, dinoflagellates, diatoms, Chlorophyll a and total particulate organic carbon/nitrogen as well as nutrients in the water samples in Bremerhaven.

The role of zooplankton as prey of passive suspension feeders has been demonstrated in many temperate and tropical regions (Sebens et al. 1996), but the value of trophically rich prey as is the zooplankton to cover the food demand of benthic suspension feeders is a subject not yet well studied.

The working group is experienced in carrying out this kind of in situ experiments as comparable studies with clams and corrals were conducted in co-operation in 2003 in Spain. The techniques to analyze the quantity of food items are well established at the AWI (chlorophyll a, Phytoplankton counts, PON and POC analyses) and the ICM (analyses for chlo-rophyll a, nutrients, flowcytometry). Furthermore the working group has published several studies on the feeding biology of filter-feeders in co-operation (e.g., Gili et al. 1998, Orejas et al. 2001, 2003, Laudien et al. in prep., Laudien and Gili in prep.). Additionally, several ecological studies were recently carried out in Kongsfjord and publications are sub-mitted (Laudien et al. submitted., Herrmann in prep., Sahade et al. submitted). During the campaign 2003 it was observed that Greenland cockles (Serripes groenlandicus) can be found within Kongsfjord. The octocorals Gersemia rubi-formis can be found in satisfactory abundances near Hansneset.
Participants

Project Leader

Prof. Dr. Wolf Arntz
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Participating Scientist

Dr. Ricardo Sahade
Universidad de Córdoba, Córdoba, Argentina

Participating Scientist

Saskia Brandt
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Participating Scientist

Nikolaus Probst
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Participating Scientist

Neus Fernandez
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Participating Scientist

Phillip Shubert
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Field Leader

Juergen Laudien
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany
Hard bottom succession panels (HBSP) at Kongsfordneset and soft bottom succession containers (SBSC) at Brandal installed in 2002 and recovered 2003 will again be sampled during 2004. Photos of all 40 HBSP will be taken with a macro-lens in order to document the recolonisation over time. As already in 2003 five original panels will be removed from the installed adapters and replaced by new panels. Furthermore five of the 2003 replaced panels will also be re-placed again in order to study annual differences in primary succession. Settled organisms will be removed in the laboratory and fixed for later identification. Biomass will be estimated from a subsample in Bremerhaven, thereafter ash free dry mass will be estimated.

After the development and establishment of this new and improved method for the analysis of succession and colonization patterns, focus will also be laid to obtain comparable results. Thus a parallel set-up using traditional plates (15 x 15 cm) and fixations will be installed at Kongsfjordneset. In turn this will allow valid comparisons between results obtained using the new method and the traditional one and therefore open the way for the extensive use of the new set up in other areas.

The ten natural areas of hard bottom cleaned and marked in 2003 will again be photographed and the succession be monitored by image analyses in Bremerhaven. The hard bottom succession will be followed during the next years. This year we will mark 10 additional natural (uncleaned) surfaces in the same way with anchor screws. For this long-term observation 10 additional small holes in the bedrock will be needed. Macrophotos of the surfaces of the 27 installed SBSC will be taken by SCUBA divers. Like in 2003 five SBSCs will be sampled by an underwater airlift system and species composition analysed in the laboratory thereafter. Again individuals will be counted, measured, weighted and thereafter ashed in order to calculate ash free dry mass. The Benthonit/sand mixture

In 2002 41 succession panels were installed at Kongsfjordneset at a depth of 20 metres. During the campaign 2003 the panels were successfully recovered and sampled. Although a huge effort has been undertaken over the last 15 years this project (KOP 51) was the first successful attempt to recover succession panels in the arctic environment! Five panels were sampled and replaced by new ones. At the moment the identification of the fauna is being carried out showing that hydrozoans, bryozoans and barnacles are the first colonizing taxa. Furthermore during 2001 and 2002 photo transects were undertaken to describe the natural fauna, two publications are submitted and oral presentations at the Congreso Argentino de Ciencias del Mar in Mar del Plata were given. Additionally 27 Terracotta containers filled with a Benthonit/sand mixture were installed in soft sediments at Brandal (18 metres depth) in 2002. Again this project was successful as all the containers could be recovered in 2003 and five of them sampled as planned. Animals were fixed and the majority has been identified. Additionally we sampled the natural fauna inhabiting the research area with the same method. This comparison is currently undertaken as a diploma thesis.
Geographical Area(s) Ny-Ålesund

Participants

Project Leader

Prof. Dr. Wolf Arntz
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany

Participating Scientist

Dr. Ricardo Sahade
Universidad de Córdoba,
Córdoba, Argentina

Participating Scientist

Saskia Brandt
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

Phillip Shubert
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

Neus Fernandez
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

BSc Marek Stibal
University of South Bohemia, Faculty of Biological Sciences
, Czech Republic

Field Leader

Juergen Laudien
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany
Our studies are divided in four parts:

1. We will measure the UV radiation regime both at the surface and underwater. The study will conduct to describe the UVR susceptibility of zoospores of brown algae in relation to their depth distribution. Arctic species might be particularly affected due to the ozone losses over the Arctic and the related increase in UVBR levels. We will describe the protective potential of these propagules by the formation of phlorotannin containing physodes during and after an exposure to artificial UVR in the laboratory. Additionally, we will conduct studies on the performance of spores in the field.

2. The effect of enhanced ultraviolet radiation on gene expression is studied in different macroalgal species, the two brown algae Laminaria saccharina and Laminaria digitata and the green algae Monostroma arcticum and Acrosiphonia arcta. The algal material will be collected by divers from different depths and will then be exposed to UV-radiation of various intensities and spectral properties in the laboratory and in the field. The main emphasis is to assess effects of naturally occurring UV-levels on gene expression of various macroalgae and to correlate these results to growth rate measurements. Additional experiments with artificial UV-radiation in the lab are also planned to support the field-data with measurements at well defined conditions.

3. The succession of benthic primary producers in the upper sublittoral will be investigated under four different light regimes (PAR, PAR+UVA, PAR+UVA+UVB, full sunlight) along the shoreline of Kongsfjorden. The aim of the project is the estimation of early, mid- and long-term effects of ultraviolet radiation (UVR) on the succession of benthic macroalgae communities. Moreover, the physiological and molecular biological properties of characteristic species of the succession process will be analysed under the aspect of UV-resistance/UV-sensitivity. The study comprises in situ measurements of photosyn.

Results

So far we have focussed mainly on the physiological effects of UV radiation on marine macroalgae from Kongsfjorden. But little is known on UV effects on the molecular effects, especially on gene expression, on the effects on reproduction and on the effects on communities. This gap will be filled by our studies described above.
Biology

Project Leader

Prof. Christian Wiencke
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany

Field Leader

Prof. Christian Wiencke
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany
Adoption in Geese - an adaptive strategy?

Discipline Biology
Nationality Netherland
Institution Animal Ecology Group, University of Groningen, P.O.Box 14, 9750 AA Haren, The Netherlands (field work)

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>Coop. Inst.</th>
<th>Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 to 2005</td>
<td>Arctic Centre, University of Groningen; Unis, Norway; CNRS - CEPE, France</td>
<td>Description</td>
</tr>
</tbody>
</table>

Adoption in geese - does caring for non-genetic offspring make sense? In geese adoption is a common phenomenon. Upto 25% of the goslings is not raised by their genetic parents. Earlier studies indicate that increasing their family size might benefit the parents as well as their genetic kids. On the other hand, adoption might be a strategy by the adopted gosling to obtain better parental care and thus better chances for survival. By marking goslings with tape flags and weblags at hatch, adoption can be studied in the field. Around hatching time, daily nest checks will be carried out and goslings marked, while at the same time 24 hour observations of family composition will be carried out from fixed hides in the breeding colony and on the grazing areas.

Results

Adoption in barnacle geese was studied in the Kongsfjorden area in 2003 by observational as well as experimental approach. Due to time limitations and high predation pressure by arctic foxes, the observational data contains very few resightings of goose families with goslings. However, the few adoptions we did observe indicate interesting patterns about the identity of goose pairs which loose goslings to other families. The study in 2004 is aiming to increase this data set and make a thorough statistical analysis possible.

The results from the experimental part of the 2003 study on adoption also yielded some interesting data, which indicates that goslings might in fact choose families they approach for adoption. This data is currently being prepared for submission for publication. Further, two master projects at the University of Groningen are being finished at the moment on the experimental and observational parts of the study in 2003.

<table>
<thead>
<tr>
<th>Geographical Area(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ny-Ålesund</td>
<td></td>
</tr>
</tbody>
</table>

Participants

Project Leader
- Dr. Ellen Kalmbach
 University of Gröningen, Animal Ecology CEES
 Haren, The Netherlands

Participating Scientist
- **Student Maaike Versteegh**
 University of Gröningen, Animal Ecology CEES
 Haren, The Netherlands

Participating Scientist
- **Student Marjan Bos**
 University of Groningen, Animal Ecology CEES
 Haren, Netherlands
Biology

Participating Scientist

Student Thea Bechsøft
UNIS,
Longyearbyen, Norway

Participating Scientist

Student Irina Andrea Muller
UNIS,
Longyearbyen, Norway

Participating Scientist

Student Reinout Havinga
University of Groningen, Animal Ecology CEES
Haren, Netherlands

Field Leader

Dr. Ellen Kalmbach
University of Gröningen, Animal Ecology CEES
Haren, The Netherlands
The population of Barnacle Geese in Kongsfjorden has been followed in detail, with ringing, measuring and observing individual geese since 1990. The population development is largely affected by the fluctuating presence of Arctic Foxes. Individual strategies of geese are examined and experimentally manipulated to determine their payoffs in fitness. Population census are made in close cooperation with G. Gabrielsen of NPI.

Digestive constraints during growth in barnacle goose goslings. Geese have a relatively simple digestive tract. They utilize almost none of the cell walls in their food leaving most of the energy in their faeces (which are eaten by reindeer). In 6 weeks time, goslings grow from 70 grammes at hatch to nearly 1500 grammes at fledging and their intestines are going through a similar size development. Consequently their digestion must improve. Families are usually feeding on the tundra while non-breeders feed on moss. Tis diet difference is related to the digestive efficiency of goslings. By collecting faeces of individual goslings at different ages, we study diet selection and gosling size in more detail. This study is in cooperation with I. Jonnsdottir of UNIS.

Has goose grazing led to changes in the environment? We plan to collect data on vegetation change, goose utilization and goose diet and breeding birds over the last decade. Preliminary comparison of photo’s from 10 years ago, show a large difference in vegetation structure. Much of these changes have been attributed to reindeer grazing. We hope to show the effect of goose grazing and want to do experiments on the reversibility of these changes using exclosures. This study is in close cooperation with F. Mehlum.

Adoption in geese is studied through intensified observations of visually marked wild goslings in cooperation with E. Kalmbach.

The barnacle goose population in Kongsfjorden is studied in detail, with annual catching, ringing and measuring and observation of individual geese since 1990. The local population established in 1982 and went through a rapid period of growth until 1993. Since then, the population stabilizes on a total number of adults between 700 to 1200 individuals. Polar fox predation varies between years. In years with foxes, survival of goslings is low, but also the surviving goslings are driven in heavily grazed safe areas, grow slowly and starve. With foxes, the population would stabilize around 700 adults. In years without foxes, more area of tundra is available and carrying capacity would be reached with 1200 adults. Individual geese are under severe intraspecific competition. Only few individuals are able to raise goslings which become breeding birds in later years. These dominant geese rely on subordinate flock members for finding the best food patches. The vegetation is changing under the heavy grazing pressure. This process is studied with exclosures and small scale vegetation manipulations.

Biology

Geographical Area(s)
Ny-Ålesund

Participants

Project Leader

Prof. Maarten Loonen
University of Gröningen, Department of Biology, Zoological Laboratory
AA Haren, The Netherlands

Participating Scientist

Dr. Ellen Kalmbach
University of Gröningen, Animal Ecology CEES
Haren, The Netherlands

Mr Daan Vreugdenhil
University of Gröningen, Arctic Centre
Gröningen, The Netherlands

Dr. Dries Kuijper
University of Gröningen, Arctic Centre
Gröningen, The Netherlands

Mr Annen Arjen
University of Gröningen, Arctic Centre
Gröningen, The Netherlands

Field Leader

Prof. Maarten Loonen
University of Gröningen, Department of Biology, Zoological Laboratory
AA Haren, The Netherlands
FRAGILE: Fragility of arctic goose habitat: impacts of land use, conservation and elevated temperatures

Both large numbers of arctic breeding geese and climate change have the potential of changing and even destroying the arctic ecosystem. The program FRAGILE, funded by the European Union, will explore the potential for these devastating effects in the European arctic, especially Spitsbergen. In an experimental way, we hope to identify the tundra ecosystem processes which are most vulnerable to the combined drivers of high goose grazing pressure and climatic warming. Plots of arctic tundra vegetation (laid out in Adventdalen) will be grazed by captive geese in various intensity. In a full factorial design also global warming is simulated using open top chambers. The effects of these treatments will be studied in detail, focussing on ecosystem carbon balance, nutrient cycling, community structure (plants and microbes) en ecosystem stability. An experiment located in Ny-Ålesund will focus on the effect of increased amount of goose droppings on the biomass of primary producers and the knock-on effects throughout the aquatic food web. A field survey at Nordenskioldkysten hopes to correlate aquatic parameters with goose presence. With our experiments, we determine thresholds for arctic tundra ecosystem degradation. The entire project FRAGILE also involves the modelling of goose numbers based on habitat availability over the entire flyway and goose energetics for performing the whole annual cycle. In combination with the tundra and lake experiments a model will be constructed to predict carrying capacity of Svalbard tundra for geese and potential effects of likely future goose populations. 2004 is the second out of three field seasons.

In the summer of 2002, we have selected a study site in Adventdalen. Experimental plots were staked out in both a wet and a dry vegetation type. In 2003, we used four geese caught in Ny-Ålesund for grazing the vegetation plots. Treatments differed in grazing pressure and temperature enhancement. Responses were measured in terms of carbon balance, nitrogen balance and phenology of plants. Most changes were observed in the wet habitat. Preferred food plants are depleted. Goose grazing decreases the capacity of the tundra to act as a carbon sink. Temperature enhancement causes a small positive effect on the amount of carbon incorporated in the tundra.

Extra studies are initiated on the following items: a. the effect of moisture on element cycles, b. the effect of grubbing by geese in early spring on vegetation recovery, c. the effect of various forms of phosphate on the vegetation d. a comparison of gosling performance with adult goose performance e. trampling effects on vegetation.

For up-to-date information we refer to our website: http://www.fragile-eu.net

Nordenskiöld Land
Participants

Project Leader

Prof. Maarten Loonen
University of Gröningen, Department of Biology, Zoological Laboratory
AA Haren, The Netherlands

Participating Scientist

Prof. Maarten Loonen
University of Gröningen, Department of Biology, Zoological Laboratory
AA Haren, The Netherlands

Participating Scientist

Førsteam. Bjørn Solheim
University of Tromsø (UiT), Department of Biology
Tromsø, Norway

Participating Scientist

Dr. Sarah Woodin
Aberdeen University, Department of Plant and Soil Science
Aberdeen, United Kingdom

Participating Scientist

Prof. Ingibjörg S Jónsdóttir
University Centre on Svalbard (UNIS), Department of Biology
Longyearbyen, Norway

Participating Scientist

Dr. Richard Ubels
University of Gröningen, Arctic Centre
Gröningen, The Netherlands

Participating Scientist

Prof. Dr. Ellen Van Donk
NIOO-CL,
Nieuwersluis, The Netherlands

Participating Scientist

Dr. Dries Kuijper
University of Gröningen, Arctic Centre
Gröningen, The Netherlands

Participating Scientist

Dr. Gerben Van Geest
NIOO-CL,
Nieuwersluis, The Netherlands

Participating Scientist

Dr. Ad Huiskes
NIOO-CEMO,
Yerseke, The Netherlands
Participating Scientist

Dr. Sofie Sjögersten Turner
University of Aberdeen, Plant and Soil Science
Aberdeen, United Kingdom

Participating Scientist

Dr. René van der Wal
Centre for Ecology and Hydrology,
Banchory, United Kingdom

Participating Scientist

Prof. Dag Hessen
University of Oslo (UiO), Institute of Biology
Oslo, Norway

Field Leader

Dr. Elisabeth Cooper
UNIS,
Longyearbyen, Norway
A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one of the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroid hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser. 245: 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nests with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight: 5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture. We have previously shown that in kittiwakes rearing chicks, they was a significant decrease in basal metabolic rate. This decrease in basal metabolic rate might be adaptive and may allow the adults to diminish their maintenance costs and increase workload (FMR) to provision the chicks. Our hypothesis is that the ability of kittiwakes to increase its FMR during foraging is constrained by the need for the BMR to decrease. Feeding an extra chick would lead to an increase of the level of activity at sea. Accordingly, this may impose a further reduction in BMR which may set the physiological limit regulating brood size in this arctic-breeding kittiwake population. Because an increase in workload imposed by the rearing of an extra-chick has to be balanced by food intake, we will also study the energy content of the food brought back to the chicks by collecting meals throughout the chick-rearing period. Studies conducted on the energetic of breeding kittiwakes have shown that there was a strong repeatability of basal metabolic rate (BMR) within individuals (Bech et al. 1999 Proceeding Royal Society 266: 2161-2167). This suggests that some individuals have consistently higher levels of energy expenditure than others and raises the question of the fitness consequences of having a low or high BMR. We have shown in house sparrow Passer domesticus that individuals with a high BMR, laid their eggs early in the season and, as a consequence, achieved a greater annual reproductive success (Chastel et al. 2003, J. Avian Biol. 34: 298-306). This programm on arctic-breeding kittiwakes would allow measurement of the influence of individual variation
Biology

Geographical Area(s)
Ny-Ålesund

Participants

Project Leader
Dr. Olivier Chastel
Centre National de la Recherche Scientifique (CNRS), Centre D'Etude Biologiques de Chizé (CEBC)
Villiers en Bois, France

Participating Scientist
Frederic Angelier
Centre National de la Recherche Scientifique (CNRS), Centre D'Etude Biologiques de Chizé (CEBC)
Villier en Bois, France

Participating Scientist
Celine Clement
CEBC/CNRS,
Villiers en Bois, France

Field Leader
Dr. Olivier Chastel
Centre National de la Recherche Scientifique (CNRS), Centre D'Etude Biologiques de Chizé (CEBC)
Villiers en Bois, France
The aim of this programme was to study the physiological and behavioural adaptations to the incubation fast in the female eider. This leads to study fundamental questions about three complementary field researches described below.

General programme:
1. Evolutionary and ecological approaches: energetic costs of reproduction during incubation
 In long-lived birds as Eider, there must be trade-offs between the energy allocated in growth and in reproduction. Therefore, individuals develop different reproductive strategies in relation with biotic and non biotic factors to maximize their fitness. Among factors tested, we will first measure the effects of animal density on female reproductive success. Additionally, we will measure, thanks to genetic tests, the frequency of intra-specific nest parasitism and extra-pair copulations to link these events with female behavioural decisions. To link reproductive effort with female immunocompetence, we will then perform PHA (phytohaemagglutinine) skin tests at different stages of the incubation period. Finally, we will perform clutch reductions at different stages of the incubation period in order to highlight decision rules controlling nest desertion in females.

2. Physiological and ecological approaches: parental investment in reproduction
 In a first experiment, we will focus on the implication of prolactin and corticosterone in the control of parental decision at the hatching stage. Implantation of exogenous hormones will be done on nesting birds to evaluate the respective role of these two hormones in the control of parental decisions in eiders. Parental investment in incubation can be regulated by the reproductive value of the clutch size. To further understand the mechanism underlying nest desertion, we will measure the induced-changes in prolactin and corticosterone concentrations after clutch size manipulation overall the incubating period.

3. Physiological approach: regulation of body fuel utilization during fasting
 During the first five campaigns of this project carried out in Ny-Ålesund, we determined some important characteristics of the biology of incubating female eiders (sleep time evolution, recess behaviour, nest attendance, stress response, plasmatic concentrations of hormones and metabolites, reaction following human disturbance). After this general description of the ecophysiology of eiders, we described the prolactin changes related to an artificial prolongation of incubation and characterized a refeeding behaviour. Common Eider females seemed to adopt new incubation behaviour when facing an experimentally extended incubation period. Relating to the sequential mobilisation of its body reserves, this shift in behaviour can be associated to the achieved low threshold of the amount of body lipids.

During the last year, our principal aim was to determine (i) the behaviour of the female when taking a recess at sea (is it eating?), (ii) the evolution of plasma prolactin level during extended incubation, (iii) the effect of corticosterone and prolactin chronic injection on bird behaviour, (iii) which factor(s) induce(s) the final nest desertion.
Biology

Geographical Area(s) Ny-Ålesund

Participants

Project Leader

Dr. Thierry Raclot
Centre National de la Recherche Scientifique (CNRS), Centre d'Ecologie et de Physiologie Energetiques (CEPE)
Strasbourg Cedex 2, France

Participating Scientist

PhD Stud. Sophie Bourgeon
CNRS, Centre d'Ecologie et Physiologie Energetiques
Strasbourg Cedex 2, France

Participating Scientist

Master Student Luc Guillaume
CEPE/CNRS,
Strasbourg Cedex 2, France

Field Leader

Dr. Thierry Raclot
Centre National de la Recherche Scientifique (CNRS), Centre d'Ecologie et de Physiologie Energetiques (CEPE)
Strasbourg Cedex 2, France
This project is a part of a long-time study of the taxonomy, physiology and ecology of Arctic snow algae in Spitzbergen. The main topics are:

(i) mapping and characterization of snow algae fields and sampling of snow algae for the establishment of clonal laboratory cultures for further in vitro studies (the use of snow algae as a bioresource for biotechnological applications such as cold-active enzymes etc.)

(ii) taxonomic and physiological characterization of snow algal strains/species

(iii) extension of our algal culture collection CCCryo (Culture Collection of Cryophilic Algae)

(iv) genetic sequencing of different strains, comparison with strains held in other culture collections (CCAP, UTEX, SAG) and other private snow algal collections (Dr. H.U. Ling, Australia; Dr. R. Hoham, U.S.A.).

In our recent work we have been conducting:

(i) cryomicroscopic studies to access the possible production of natural antifreeze proteins / substances in selected snow algal strains

(ii) differential transcriptome studies on proteome and RNA level (cDNA fingerprinting)

Literature:

Biology

Geographical Area(s)
Prins Karls Forland
Haakon VII Land
Andrée Land
Ny-Friesland
Gustav V Land
Ny-Ålesund

Participants

Project Leader
Prof. Dr. Günter Fuhr
Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Medical Biotechnology, Extremophil, Institute of Biology and Membranophysiology
Berlin, Germany

Participating Scientist
Dr. Torsten Müller
Humboldt University of Berlin, Institute of Biology
Berlin, Germany

Participating Scientist
Dipl. Biol. Thomas Leya
Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Medical Biotechnology, Extremophil, Berlin, Germany

Participating Scientist
Prof. Andreas Manz
Imperial College, Dept. of chemistry
London, United Kingdom

Field Leader
Prof. Dr. Günter Fuhr
Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Medical Biotechnology, Extremophil, Institute of Biology and Membranophysiology
Berlin, Germany

Prins Karls Forland
Haakon VII Land
Andrée Land
Ny-Friesland
Gustav V Land
Ny-Ålesund
Biology

Proj. Title
Arctic and Alpine Stream Ecosystem Research (AASER)

Discipline
Freshwater Ecology

Nationality
Multinational

Institution
Freshwater Ecology & Inland Fisheries Laboratory (LFI), Natural History Museum & Botanical Garden, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway.

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2004 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Museum of Natural Sciences, Trento, Italy; University of Innsbruck, Austria; University of Birmingham, UK, University of Iceland; University of Geneva, Switzerland; Norwegian Water Resources & Energy Directorate (NVE)</td>
</tr>
<tr>
<td>Programme</td>
<td>Undertake studies of benthos in Bayelva and Ny London</td>
</tr>
<tr>
<td>Description</td>
<td>Collect material for studies of stable isotopes in Svalbard freshwater systems in the vicinity of Ny Ålesund</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Ny-Ålesund</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Prof. John Brittain
University of Oslo (UiO), Freshwater Ecology and Inland Fisheries Laboratory (LFI), Natural history Museum & Botanical Garden
Oslo, Norway

Participating Scientist

Dr. Leopold Fureder
University of Innsbruck, Institute of Zoology & Limnology
Innsbruck, Austria
Biology

Field Leader

Prof. John Brittain
University of Oslo (UiO), Freshwater Ecology and Inland Fisheries Laboratory (LFI),
Natural history Museum & Botanical Garden
Oslo, Norway
In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential. The objectives for the annual programme are three folds: 1) to have a first assessment of the environmental factors that influence the most aphid population biology in Svalbard, 2) to precise on site with our French and Norwegian colleagues specialized on plant ecology in Svalbard a joint programme on plant-aphid interactions and 3) to initiate in the field the 3 years work programme.

The field work includes:
1) Composition of aphid species in Svalbard: prospecting and identification
2) Habitat characterization of aphid species and colonization rate
3) Assessment of the relative importance of endemic and introduced species: elaboration of a sampling design for a temporal survey of aphid population dynamics over the whole growing season during the next two years
4) First approach of population genetic structure of the endemic species Acyrthosiphon svalbardicum: several populations will be collected in geographically distant sites and genotyped in the lab. Between population differentiation and inbreeding coefficient will be assessed based on population structure analyses.
Biology

Participating Scientist

Dr. Simon Jean-Christophe
UMR INRA/Agrocampus Rennes,
Cedex, France

Participating Scientist

Dr Mellet Martin
IPEV (Institut Paul Emile Victor), Technopôle Brest-Iroise
Plouzané, rance

Field Leader

Dr. Hullè Maurice
UMR INRA/Agrocampus Rennes,
Cedex, France
The project focus is on photosynthetic responses of Arctic macroalgae to changing abiotic conditions. Key species along the shoreline of Kongsfjorden will be studied for the combined effects of increased ultraviolet radiation and seawater temperature, according to scenarios of climate change. The addressed changes in physico-chemical conditions will exert hitherto unknown effects on macroalgal physiology. We will compare responses of specimens collected along depth gradients, by exposing them in temperature controlled mesocosm systems, shielded with filter foils or additionally equipped with UV-fluorescent tubes. We will conduct in situ-measurements of photosynthetic performance and conserve algae for later physiological analysis in the laboratory. These surveys will include changes in pigment composition including the regulatory xanthophyll cycle, as an important protection system in the response to high light stress, induction of stress (heat shock) proteins, DNA damage and the generation of reactive oxygen species. Results will allow new insights in the reaction of species physiology upon environmental changes. In combination with datasets from physical oceanography it will be possible to draw conclusions on the development of macroalgal communities in response to climate change.

Results

Geographical Area(s)
Ny-Ålesund

Participants

Prof. Dr. Kai Bischof
Institute for Polar Ecology, University of Kiel, Kiel, Germany

Jana Fredersdorf
Institute for Polar Ecology, Kiel, Germany

Bettina Walter
Institute for Polar Ecology, Kiel, Germany

Prof. Dr. Kai Bischof
Institute for Polar Ecology, University of Kiel, Kiel, Germany
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Inventory of the Horsund fjord marine fauna and flora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Marine Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Polish</td>
</tr>
<tr>
<td>Institution</td>
<td>Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2002 to 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Polish Polar Station in Horsund, Institute of Geophysics, Polish Academy of Sciences, Poland</td>
</tr>
<tr>
<td>Programme</td>
<td>MARBENA, MARBEF</td>
</tr>
<tr>
<td>Description</td>
<td>FIRST OF ALL THE PROJECT WILL TRY TO DESCRIBE ALL THE BIODIVERSITY IN THE HORSUND FJORDIC SYSTEM. THE PROJECT IS BASED ON THE HISTORICAL DATA AND DATA COLLECTED DURING THE SUMMER EXPEDITION IN 2003, 2004. THE FIELD WORK IN 2003 WILL TRY TO COVER THE BIG GAPS IN OUR BIODIVERSITY KNOWLEDGE ABOUT CONCERNED FJORD.</td>
</tr>
</tbody>
</table>

| Results | Part of the information is already available at www.iopan.gda.pl/projects/biodaff |

| Geographical Area(s) | |

Participants

Project Leader

Prof. Dr. Jan Marcin Weslawski
Institute of Oceanology, PAS, Department of Polar and Marine Research, Institute of Oceanology, Arctic Ecology Group
Sopot, Poland

Participating Scientist

PhD Marek Zajaczkowski
Polish Academy of Sciences (PAS), Institute of Oceanology, Arctic Ecology Group
Sopot, Poland

Participating Scientist

PhD Piotr Kuklinski
Institute of Oceanology, PAS
Sopot, Poland

Field Leader

PhD. Maria Wlodarska - Kowalczuk
Institute of Oceanology, PAS
Sopot, Poland
Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pond survey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.

The project will start in June 2004. No results on high arctic habitats are yet available. A similar survey has started in subarctic Kilpisjärvi (Finland) area last summer. Results will be published in:
Biology

Proj. Title
CABANERA-Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change

Discipline
Marine Ecology

Nationality
Norwegian

Institution
Norwegian College of Fishery Science, University of Tromsø

Proj. Period
2003 to 2006

Coop. Inst.
Norwegian Polar Institute, Akvaplan-niva AS, Norwegian University of Science and Technology (NTNU), Geophysical Institute /University of Bergen, Bjerknes Centre for Climate Research, Institute of Marine Research, UNIS, SINTEF

Programme
Nordklima.

Description
Principle objective: Determine the climatic sensitivity of the dominant energetic and carbon pathways in the MIZ of the northern Barents Sea and Svalbard shelf.

Sub-goals:
- Sensitivity test an existing physically-biologically coupled 3D model
- Conduct fully integrated, seasonal process studies across the MIZ
- Use field investigations and data to improve model algorithms
- Improve the model by adding CO2 and benthos module
- Validate simulation with field results
- Investigate the impact of climate variability on C flux and ecosystem feedback
- Forecast consequences of climate change for MIZ ecosystem

2003 is the first year of the project and the main activities planned is project kick-off, sensitivity testing and validation of the existing physical-biological coupled 3D model and the first of three cruises. During two weeks in July material will be sampled and process studies carried out to achieve increased understanding of the functional responses in the northern Barents Sea ecosystem including sea ice, the pelagic and benthos, physics, chemistry and biology.

Results
Last year’s cruise was successfully carried out, and presentation of results from the involved partners and associates is scheduled for the annual meeting in June 2004. Publications from the project are still in progress.

Geographical Area(s)
Barents Sea

Participants

Project Leader
Prof. Paul Wassmann
University of Tromsø, Norwegian College of Fishery Science
Tromsø, Norway

Participating Scientist
Prof. Harald Svendsen
University of Bergen (UiB), Department of Geophysics
Bergen, Norway
Participating Scientist

Dr. Haakon Hop
Norwegian Polar Institute (NPI),
Tromsø, Norway

Participating Scientist

Dr. Bellerby Richard
Bjerknes Centre for Climate Research, Geophysical Institute
Bergen, Norway

Participating Scientist

Dr. Geir Johnsen
NTNU/UNIS, Trondhjem Biological Station
Trondheim, Norway

Participating Scientist

Dr. Padmini Dalpadado
Institute of Marine Research,
Bergen, Norway

Participating Scientist

Dr. Michael Carroll
Akvaplan-niva,
Tromsø, Norway

Field Leader

Prof. Paul Wassmann
University of Tromsø, Norwegian College of Fishery Science
Tromsø, Norway
The role of climatic variation in the dynamics and persistence of an Arctic predator-prey/host-parasite system

Discipline Ecology

Nationality Norwegian

Institution Norwegian Institute for Nature Research (NINA), Tromsø, Norway

Proj. Period 2002 to 2006

Coop. Inst. Norwegian Polar Institute

Institute of Biology, University of Tromsø

Programme ARKTØK/KLIMAEFFEKTER/NORKLIM(NFR)

Description The project aims at elucidating the interactions between climatic variability and the dynamics of a predator-prey/host parasite system. The population dynamics of the sibling vole Microtus epiroticus in the Grumantbyen area are strongly influenced by the quality and quantity of snow, and in particular icing events which result in extensive population crashes. The parasite Echinococcus multilocularis has the sibling vole as intermediate host, and the arctic fox as final host. We will make field measurements of snow characteristics as well as intensive studies of the vole and fox populations. Prevalences of Echinococcus will be estimated based on blood and feces samples taken in the field.

Results
- In mid-April 2002, 2003 and 2004, we sampled snow depth along three transects at 50, 100 and 150 meters a.s.l., and recorded snow properties in snow pits located along the 4 ridges used as sampling locations for voles.
- In early August and September 2002, the temperature loggers and thermistor chains were installed according to the application send to the Governor of Svalbard.
- In early July, early August and early September 2002 and 2003, we live-trapped the four ridges, Grumantbyen area, as well as a new area between ridge 2 and ridge 3 which was trapped in 1990-96. Densities were very low in 2002, but high in 2003 as a consequence of vole reproduction in late spring 2003. Blood samples were taken in July, August and September 2003, and the samples will be processed later this spring.
- In early August 2002 and 2003, most of the area along Fuglefjella, E and W of Grumantbyen, was surveyed for vole signs, and patches with vole signs were snap-trapped to get EM prevalence data.
- In early August 2002 and 2003, the area below and above the main seabirds colonies were surveyed for arctic fox dens. Three active dens with pups were identified in 2002. Other dens, probably used only as rest dens, were mapped.
- In early July, early August and early September 2002 and 2003, feces densities were estimated using line transect methods in the 6 live-trapping areas. Approximately 50 transects, each ca. 20 m. long, have been established and permanently marked. Feces collected (ca. 200) will be further analysed for presence of EM.

Geographical Area(s)
- Nordenskiöld Land
- Longyearbyen

Participants
Project Leader

Prof. Nigel G. Yoccoz
Norwegian Institute for Nature Research (NINA), Tromsø, Norway

Participating Scientist

Prof. Rolf A. Ims
University of Tromsø (UiT), Department of Ecology, Institute of Biology
Tromsø, Norway

Participating Scientist

Dr. Jan-Gunnar Winther
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Dr. Audun Stien
University of Tromsø (UiT), Institute of Biology
Tromsø, Norway

Participating Scientist

Dr. Eva Fuglei
Norwegian Polar Institute (NPI), Tromsø, Norway

Field Leader

Prof. Nigel G. Yoccoz
Norwegian Institute for Nature Research (NINA), Tromsø, Norway
The project aims to study the influence of natural winter emaciation in an arctic top-predator on organochlorine contaminant tissue distribution, bioavailability and biological impact. Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavourable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from "insensitive", adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future research area. In the present study, we will use the arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants in relation to natural variations in lipid status (field study). One old, male arctic fox, with low levels of body fat, was trapped in July in 2003, and we plan to trap up to 6 summer-adapted foxes between July and August 2004. We collected winter-adapted foxes, with high levels of body fat, from the annual fur-trapping season on Svalbard in 2003-2004.
Biology

Participating Scientist

Dr. Scient. Øystein Ahlstrøm
Agricultural University of Norway (NLH), Department of Animal Science
Ås, Norway

Participating Scientist

Dr. Hans Wolkers
Norwegian Polar Institute (NPI),
Tromsø, Norway

Participating Scientist

Dr. Derek Muir
National Water Research Institute, Environment Canada
Burlington ON, Canada

Participating Scientist

Prof. Bjørn Munro Jensen
Norwegian University of Science and Technology (NTNU), Department of Zoology
Trondheim, Norway

Field Leader

Dr. Eva Fuglei
Norwegian Polar Institute (NPI),
Tromsø, Norway
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Arctic fox den monitoring on Svalbard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Biology and Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute</td>
</tr>
</tbody>
</table>

Proj. Period 1990 to 2004
Coop. Inst. Biodiversity, NP
Programme The objectives of the project is to resume the long term data series on known arctic fox den sites and arctic fox reproduction in Adventdalen/Sassendalen and in Kongsfjorden. The den survey in Sassen/Adventdalen will be conducted in two weeks in July, and in Kongsfjorden it will be conducted in 7 days in July. Arctic fox scats will also be collected from as many locations on Svalbard as possible through other research projects and field parties, in order to do genetic analysis on arctic fox population structure.
Description The den survey in Sassen/Adventdalen has been conducted in two periods: 1982-1989 and 1997-ongoing. In Kongsfjorden the den survey data are from 1990-ongoing.

Geographical Area(s)
Nordenskiöld Land
Oscar II Land
Haakon VII Land

Participants

Project Leader
Dr. Eva Fuglei
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist
Bjørn Anders Nymoen
Norwegian Polar Institute (NPI), Tromsø, Norway
Biology

Participating Scientist

Pål Martin Eid
The Norwegian Polar Institute,
Tromsø, Norway

Participating Scientist

Dr. Jane Uhd Jepsen
The Norwegian Polar Institute,
Tromsø, Norway

Field Leader

Dr. Eva Fuglei
Norwegian Polar Institute (NPI),
Tromsø, Norway
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Svalbard reindeer monitoring, Brøggerhalvøya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>1978 to 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>MOSJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Continue the annimal monitoring of Svalbard reindeer population size that has been conducted since 1978 (winter). Estimate of dens population variance (summer).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>Aanes et. al. (2000); Ecography 23; 437-443</td>
</tr>
<tr>
<td></td>
<td>Aanes et. al. (2002); Ecology methods 5; 445-454</td>
</tr>
<tr>
<td></td>
<td>Aanes et. al. (2003); Can. J. Zool. 81; 103-110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geographical Area(s)</th>
<th>Oscar II Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ny-Ålesund</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Ronny Aanes
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Snorre Henriksen
Norwegian University of Science and Technology (NTNU), Department of Zoology
Trondheim, Norway

Field Leader

Ronny Aanes
Norwegian Polar Institute (NPI), Tromsø, Norway
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Hydroacoustic (EK-60) survey of pelagic fish and invertebrates in Kongsfjorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Marine Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2004 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>SIMRAD</td>
</tr>
</tbody>
</table>
| Description | 1) Calibrate and test EK-60 echosounder on R/V 'Lance'.
2) Conduct standard zooplankton transect Kongsfjorden - Kongsfjord shelf/slope. Sampling at stations with Multi Plankton Sampler (MPS), WP-3 plankton net, CTD, fluorometer, water bottles for phytoplankton.
3) Locate patches of zooplankton and pelagic fishes and sample them with nets and trawls (tucker trawl and pelagic trawl). Zooplankton will be preserved for prey abundance/biomass and fish will be frozen for stomach content determination for predator-prey relationship. Samples will be taken for stable isotopes and lipids.
4) Estimate biomass of predator/prey (polar cod/zooplankton) in dense patches.
5) Survey the fjord for biomass concentrations of zooplankton and fish. |
| Geographical Area(s) | Ny-Ålesund |

Participants

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
<td>Dr. Haakon Hop</td>
<td>Norwegian Polar Institute (NPI),</td>
<td>Tromsø, Norway</td>
</tr>
<tr>
<td>Participating Scientist</td>
<td>Dr. Stig Falk-Petersen</td>
<td>Norwegian Polar Institute (NPI),</td>
<td>Tromsø, Norway</td>
</tr>
<tr>
<td>Field Leader</td>
<td>Dr. Haakon Hop</td>
<td>Norwegian Polar Institute (NPI),</td>
<td>Tromsø, Norway</td>
</tr>
</tbody>
</table>

54
Biology

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Biology and Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute (NPI), Tromsø</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2000 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Govenor of Svalbard, Longyearbyen</td>
</tr>
<tr>
<td>Programme</td>
<td>Monitoring and assessment programme for Svalbard and Jan Mayen</td>
</tr>
<tr>
<td>Description</td>
<td>The objective of the study is to determine the relative density of territorial Svalbard Rock Ptarmigan (Lagopus mutus hyperboreus) males in order to monitor long-term trends of the populations. The survey will be conducted in Adventdalen and Sassendalen in April 2004. Point counts for 20 minutes from approximately 100 set geographical positions with a distance of 1-2 kilometers in between will be conducted 2-3 times during the study period. Relative densities of males are calculated by using the program Distance Sampling. Use of indexes to describe trend lines will developed.</td>
</tr>
<tr>
<td>Results</td>
<td>The previous surveys are described in unpublished annual reports (in Norwegian) to the Norwegian Polar Institute and the Governor of Svalbard. The results will be published internationally after five years of monitoring data are obtained.</td>
</tr>
</tbody>
</table>

Geographical Area(s): Nordenskiöld Land

Participants

Project Leader

Dr. Eva Fuglei
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Cand. Scient. Marie Lier
University Centre on Svalbard (UNIS), Longyearbyen, Norway

Participating Scientist

Heli Routti

Field Leader

Stip. Åshild Pedersen
University of Tromsø, Institute for Biology
Tromsø, Norway
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Effects of organohalogen contaminants on the metabolic systems and thyroid functions of glaucous gulls (Larus hyperboreus) from Bjørnøya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Ecotoxicology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute's Ecotoxicology Programme</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2004 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Great Lakes Institute for Environmental Research (Windsor, Canada), Norwegian School of Veterinary Science (Oslo, Norway), and National Water Research Institute (Burlington, Canada)</td>
</tr>
<tr>
<td>Programme</td>
<td>The main objectives of the current proposal are to investigate the effects of a suite of organohalogen contaminants on the metabolic systems of glaucous gulls, and to examine the implication of circulating thyroid hormone levels in the model. For this purpose, a total of 20 adult glaucous gulls will be captured on their nests during the incubation period at Bjørnøya. Various metabolic system measurements will be carried out, i.e. basal metabolic rate (BMR) and field metabolic rate (FMR), and each bird will be sampled for blood, and finally released in the colony. The present project is part of a three-year (2004-2006) doctoral fellowship (NFR; project no. 160919/V10-Jonathan Verreault) assessing the effects of organohalogen contaminants and metabolites of organohalogens on the endocrine, enzymatic, and metabolic systems of glaucous gulls from Bjørnøya. Briefly, the adult glaucous gulls will be captured during the incubation period, i.e. from May 20th to June 20th 2004. The trap consists of a snare placed on the edge of the nest bowl and attached to a mechanism triggered by a radio transmitter. Measurements of FMR will be performed by the use of doubly labelled water (DLW), according to published methods by Nagy (1980). Immediately following capture, the birds will be injected 3 mL of DLW (H218O) into the pectoral muscle. A blood sample (1 mL) will be taken from each individual 1 hour after injection of DLW, and released in the colony. The birds will be re-captured within 2 days of DLW injection and a second blood sample will be taken. This second blood sample (12 mL for 1500g of body weight), collected from the brachial vein of the wing, will also be used for measurements of organohalogen contaminant and thyroid hormone levels. The field procedures for measurement of FMR are described by Gabrielsen et al. (1991) and Ellis and Gabrielsen (2001). Measurements of BMR will be performed by the use of indirect calorimetry on the same glaucous gulls captured for FMR measur</td>
</tr>
<tr>
<td>Results</td>
<td>This NFR doctoral project has just started and has generated to date 1 publication from samples of glaucous gulls collected in 2001 on Bjørnøya. One publication is currently in preparation for samples of glaucous gulls collected in 2002 from the same study area, and 2 additional publications are also anticipated from this work. Publications: Verreault J, Skaare JU, Jenssen BM, Gabrielsen GW. 2004. Effects of organochlorine contaminants on thyroid hormone levels in Arctic breeding glaucous gulls Larus hyperboreus. Environ Health Perspect 112:532-537. Verreault J, Letcher RJ, Muir DCG, Gebbink W, Shu S, Gabrielsen GW. Emerging halogenated contaminants and metabolites in glaucous gulls Larus hyperboreus; in preparation.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Bjørnøya</td>
</tr>
</tbody>
</table>
Biology

Participants

Project Leader

Dr. Geir Wing Gabrielsen
Norwegian Polar Institute (NPI),
Tromsø, Norway

Participating Scientist

Prof. Erik Ropstad
Norwegian School of Veterinary Science, Department of Reproduction and Forensic Medicine
Oslo, Norway

Participating Scientist

Dr. Derek Muir
National Water Research Institute, Environment Canada
Burlington ON, Canada

Participating Scientist

Dr. Robert J. Letcher
University of Windsor, Great Lakes Institute for Environmental Research
Windsor, Canada

Participating Scientist

Mr Jonathan Verreault
Norwegian Polar Institute, Tromsø, Norway

Field Leader

Dr. Geir Wing Gabrielsen
Norwegian Polar Institute (NPI),
Tromsø, Norway
The archipelago of Svalbard was almost completely ice-covered during the last glaciation. The most thermophilous plants occurring there today must therefore have arrived postglacially by long-distance dispersal. Such species (e.g. dwarf birch, arctic blueberry) are probably relics from the hypsithermal, which was 1-2 °C warmer than today. Climate models predict an increase of the average temperature by 3-3.5 °C from 1990 to 2070 in Svalbard. Thus, even more thermophilous species may establish, given that they are able to cross the oceans. Species such as mountain birch, grey willows, and blueberry dominate more southern ecosystems and will cause ecological cascade effects if they succeed to establish in Svalbard. We will use molecular markers (AFLPs, DA-Ts, transposon displays, cpDNA markers), genotype assignment tests, and phylogenetic analyses to identify source areas and frequency of previous immigrations of plant species to Svalbard, to estimate dispersal abilities of putative immigrant species that have not yet arrived, and to compare the likelihood for successful immigrations of species that are bird-dispersed, wind-dispersed, and without particular adaptations. The research team combines molecular, phyllogeographic, and paleoclimatological expertise and will train two post-doc, one PhD, and several MAs.

A large amount of plant samples have been analysed for molecular variation and preliminary results were presented on a conference in Leeds August 2003. One Master student, Inger Skrede, has finished her thesis, and one more, Kristine Westergaard will finish in June 2004.
Participants

Project Leader

Prof. Chrstian Brochmann
University of Oslo (UiO), The Natural History Museum and Botanical Garden
Oslo, Norway

Field Leader

Dr. Inger Greve Alsos
NCB - National Centre for Biosystematics
Natural History Museums and Botanical Garden
University of,
Oslo, Norway
Biology

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Monitoring rabies, parasites and diseases in the arctic fox population on Svalbard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Biology and Ecology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>The Norwegian Polar Institute</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2001 to 2005</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>National Veterinary Institute, Tromsø, and Norwegian School of Veterinary Medicine, Tromsø, and National Veterinary and Food Research Institute in Oulo, Finland and the Governor of Svalbard</td>
</tr>
<tr>
<td>Programme</td>
<td>Biodiversity NP</td>
</tr>
<tr>
<td>Description</td>
<td>The goal of the study is to monitor the occurrence of rabies, parasites and other zoonotic diseases in the arctic fox population on Svalbard. Arctic fox carcasses are collected from the annual arctic fox trappers on Svalbard through cooperation with the Governor of Svalbard. All carcasses are transported frozen to NP in Tromsø for storing. The carcasses are autopsied and samples taken at the National Veterinary Institute, Tromsø/The Norwegian Polar Institute.</td>
</tr>
<tr>
<td>Results</td>
<td>Arctic fox carcasses are annually collected from trappers on Svalbard and shipped to NP Tromsø for storing until sample collection.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Nordenskiöld Land, Oscar II Land, James I Land, Dickson Land, Ny-Friesland, Hopen</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Project Leader</td>
<td>Dr. Eva Fuglei, Norwegian Polar Institute (NPI), Tromsø, Norway</td>
</tr>
<tr>
<td>Participating Scientist</td>
<td>Dr. Morten Tryland, University of Tromsø, Department of Arctic Veterinary Medicine, Tromsø, Norway</td>
</tr>
<tr>
<td>Participating Scientist</td>
<td>Dr. Antti Oksanen, National Veterinary and Food Research Institute, Oulo Regional Unit, Oulo, Finland</td>
</tr>
</tbody>
</table>
Biology

Participating Scientist

Dr. Kjetil Aasbakk
University of Tromsø, Norwegian School of Veterinary Medicine
Tromsø, Norway

Participating Scientist

Dr. Terje Josefson
National Veterinary Institute,
Tromsø, Norway

Participating Scientist

Cand. Med.vet Torill Mørk
National Veterinary Institute,
Tromsø, Norway

Field Leader

Dr. Eva Fuglei
Norwegian Polar Institute (NPI),
Tromsø, Norway
The goal of the project is to study the structure of the arctic fox population within sub-populations, and migrations between and within sub-populations on the Svalbard archipelago. This is of importance for the management of the arctic fox trapping on Svalbard, but also in general for this species dispersal ecology on the archipelago.

Samples to be analysed are collected through two sources:

1. More than 600 arctic fox carcasses trapped from 9 different locations on Svalbard have been collected from the annual arctic fox trappers on Svalbard since 1996. All carcasses are transported to the Norwegian Polar Institute in Tromsø for storing, and samples of muscles have been taken out and are stored frozen.

2. Arctic fox faeces are collected from as many locations as possible on Svalbard from different field parties.

The project aims at investigating the reproductive biology of the snow bunting, and how the species, which is the only regularly breeding passerine species in Svalbard, has adapted to the special environment, and how its behaviour is related to the reproductive success. Behavioural features (e.g. song, mate guarding, extra-pair copulations (EPC), incubation feeding, parental care, diurnal activity) and structural features (e.g. variation in plumage, biometric features) are analysed in relation to environmental variables, mate choice, timing of breeding and breeding success. General reproduction data and survival data are collected over years and analysed in relation to population dynamics and environmental adaptations. Blood samples are taken from family groups for DNA-finger printing. Adult and juvenile site fidelity, dispersal and philopatry is studied on the basis of recoveries and sightings of individually ringed birds. Special attention will be paid to the significance of hatching asynchrony and variation in egg size, and the termoregulatory development in the young.

In the past 6 years more than 500 breeding pairs have been monitored with respect to e.g. onset and length of breeding season (considerable annual variations), polyterritoriality (three recorded instances), double clutches (none in 1998, 2000 and 2001, nine, four and one in 1999, 2002 and 2003, respectively), mate guarding (males guard their mates intensively 3-4 days prior to egg laying), extent of EPC (approx. 10 % of DNA-finger printed young are EPO), song quality and song rate vs male quality (only song rate seems to be associated with male quality), parental care (both parents normally participate in feeding the chicks), clutch size (approx. 6 eggs and 5.5 chicks per clutch), breeding success (3-4 fledged young/clutch; variation mainly caused by varying predation pressure). More than 1500 snow buntings (ad. and pull.) have been ringed with metal and colour rings, mainly for monitoring population dynamics and recording of site fidelity and returning rate/philopatry. Preliminary results indicate a high rate of returning to previous breeding sites.

Publications:

Manuscripts:

Manuscripts:

Biology

Geographical Area(s)

Longyearbyen

Participants

Project Leader

Prof. Yngve Espmark
Norwegian University of Science and Technology (NTNU), Department of Biology
Trondheim, Norway

Participating Scientist

Prof. Arne Moksnes
Norwegian University of Science and Technology (NTNU), Department of Zoology
Trondheim, Norway

Field Leader

Prof. Yngve Espmark
Norwegian University of Science and Technology (NTNU), Department of Biology
Trondheim, Norway
In spring, thousands of geese migrate from temperate wintering areas to Svalbard. Before arriving at their breeding grounds they stage in pre-breeding areas in Southern Svalbard to supplement their body reserves. For geese, feeding conditions in spring are suggested to be crucial for their breeding success and, hence, influence population dynamics. For plants, however, the outcome of grazing depends on intensity and timing of the event. Global change may alter the phenology for both, goose migration and plant growth, and thus, alter their relationship. Accordingly, only by examining the phenology of geese and plants, mechanisms controlling this relationship can be fully understood. Consequently, this three-years-study will involve (1) an examination of goose feeding habits in a pre-breeding area for geese in Svalbard, (2) an assessment of forage impact on the vegetation, by experimental altering the timing and intensity of the grazing, and (3) an evaluation of the consequences of feeding conditions for the reproductive performance of the geese. Very little is known about the pre-breeding areas for Arctic-nesting geese and this study will contribute to close the gap of knowledge of the present state and possible future development in such areas.

Arrival and departure date as well as body condition of all 3 Svalbard goose species in Vårsolbukta could be registered in spring 2003. For the barnacle geese staging in that area also staging time, diet, time budget of individual geese were assessed. In addition, general conditions in the area, eg. time of snowmelt, temperature, plant growth were monitored.

Nordenskiöld Land

Participants

Prof. Ingibjörg S Jónsdóttir
University Centre on Svalbard (UNIS), Department of Biology
Longyearbyen, Norway

Eirin Bjørkvoll
University Centre on Svalbard (UNIS), Department of Biology
Longyearbyen, Norway

Christiane Hübner
University Centre on Svalbard (UNIS), Department of Biology
Longyearbyen, Norway
Germinable seed bank diversity at high altitudes on Svalbard and implications to vegetation population dynamics with climate change

Discipline Botany
Nationality Canadian
Institution University in Tromsø

Proj. Period 2004 to 2004
Coop. Inst. University Centre in Svalbard
Programme N/A

Description The purpose of this project is to compare spatial distribution and species composition of high altitude plant species in existing vegetation, seedling emergence, seed rain and the germinable seed bank in order to determine the potential for change in vegetation community structure with climate change. All data collection for this project will be completed in 2004, with fieldwork on Svalbard from May - September, and germination of seeds in Tromsø from September - December 2004. Based on site accessibility and minimal influence from mining activities, six transects have been chosen in furrows or valleys ascending north-facing slopes of mountains bordering the South side of Adventdalen, Svalbard. Transects are from 100m to 500m in altitude. At each 100m elevation interval, for a total of 5 intervals per transect, a 5 x 5 m sampling area will be marked out. In each sampling area, 10 snow core and 25 soil cores will be taken, 5 seed mats and one temperature logger laid out (May-September) and 4 vegetation analysis and 4 seedling analysis will be conducted. Seed mat and snow core debris and soil cores will be used in germination trials in Tromsø from September - December to identify species present in the germinable seed rain and seed bank.

Results This is the first year of this study.
Geographical Area(s) Longyearbyen

Participants

Project Leader M.Sc candidate Rebecca Rose Barlak
UNIS, Longyearbyen, Norway

Participating Scientist Dr. Lennart Nilsen
University of Tromsø (UiT), Department of Biology
Tromsø, Norway

Participating Scientist Dr. Elisabeth Cooper
UNIS, Longyearbyen, Norway
Biology

Participating Scientist

Prof. Ingibjörg S Jónsdóttir
University Centre on Svalbard (UNIS), Department of Biology
Longyearbyen, Norway

Field Leader

M.Sc candidate Rebecca Rose Barlak
UNIS,
Longyearbyen, Norway
The aim of research in 2004 is to continue analysis and describe life cycles and distribution of marine meio-benthic organisms, specially crustaceans: ostracods and copepods (Harpacticoida) from Spitsbergen.

Results

Investigations in 1995-2002 concerned:
1. Faunistic characteristics of selected groups of crustaceans living in Nottinghambukta and in neighbouring freshwater ponds,
2. Nottinghambukta:
 - characteristics of salinity and temperature,
 - characteristics of winter and early-spring microenvironmental conditions upon and in bottom sediments,
 - overwintering life strategies of selected species of copepods,
 - characteristics of changes of ice seasons,
3. Genetic polymorphism of populations of selected species of ostracods,
4. Description of life strategies of freshwater ostracods: Candona rectangulata and Tonnacypris glacialis,
5. Genetic polymorphism of populations of Lepidurus arcticus,
6. Faunistic characteristics of selected groups of meio-benthic organisms living in Petuniabukta.

Wisniewska B. 2001. Perennial fluctuation of Harpacticoida inhabiting Nottinghambukta (South Spitsbergen) with careful consideration for their wintering strategies. In

Geographical Area(s)

Wedel Jarlsberg Land
Albert I Land
Haakon VII Land
Andrée Land
Arctic Ocean

Participants

Project Leader

prof. dr hab Tadeusz Sywula
University of Gdansk, Department of Genetics
Gdansk 50, Poland

Participating Scientist

MSc. Jerzy Rozanski

MSc. Agnieszka Mackiewicz
University of Gdansk, Department of Genetics
Gdansk 50, Poland

Field Leader

Dr. Barbara Wisniewska-Wojtasik
University of Gdansk, Department of Genetics
Gdansk 50, Poland
Although density dependent reduction in reproductive success is a well-studied phenomenon in animal ecology, the exact mechanism is often largely understood. The increasing size of several populations of arctic-breeding goose populations calls for further study in order to make predictions on population developments in the future. This study focuses on a local population of barnacle geese on the west coast of Svalbard, that has been intensively studied during the past 25 years. In line with growth of the total population (7000 in 1977, and approximately 25000 today), the population in the study area has more than tripled. The research of this year will involve a wide array of assessments on geese throughout the incubation period and early brood-rearing (body condition, food intake, demographic parameters) and on the tundra vegetations that are used by the geese (biomass availability, production, and grazing intensity by herbivores).

Twenty years ago the study area produced a substantial proportion of all juveniles in the barnacle goose population. Since 1986 the numbers of goslings raised dropped drastically, although the total number of adults still increases. The main reason for this drop is hypothesised to be the limited amount of food resources. This limitation may occur during pre-breeding, during the egg-stage or during the brood-rearing period.

Prop J, Black JM, Shimmings P (2003) Travel schedules to the high arctic: barnacle geese trade-off the timing of migration with accumulation of fat deposits. Oikos 103: 403-414

Geographical Area(s)
Biology

Participating Scientist

Ing. Jim De Fouw
Zoological Laboratory,
Haren, Netherland

Field Leader

Dr. Jouke Prop
Zoological Laboratory,
Haren, Netherland
The objective of the proposed research with arctic higher plants and snow algae is to study the range of adaptation of photosynthetic metabolism, of antioxidative and sun screen compounds in a cold and reduced UV-B climate in comparison with data already obtained from the high Alps, with plants living partially under colder and different light regimes, especially higher UV-B. Further, the ultrastructure of leaf cells will be studied to ascertain, whether adaptations found in some high alpine plants occur similarly in arctic plants, and to connect cytological results with metabolic functions. It is the advantage of the planned work, that a number of investigations ranging from ultrastructural studies over different aspects of photosynthesis to assays of UV-B sensitive compounds and antioxidants will be conducted mostly with measurements and sample collection in the field during the same experimental day at one place. Therefore we expect a good connection of the data raised, back to the plant system and expect a much broader description of vitality and adaptation under the cold and light conditions. This is a continuation of the project from 2002 at Ny-Alesund

Previous work with high mountain plants was mainly done with selected members from a range of plant families growing in the alpine and nivale zones. Several of those plants are also found in the arctic as the same species, but other ecotypes, or as close relatives to these alpine species. The main interest of our work is to understand whether the range of adaptation of plants from alpine and arctic ecosystems differ under natural influences (mainly climate stress), but also how the evolutionary selected stress resistance will be influenced by anthropogenic impacts like UV-B or ozone.

Concerning algae, the UV-B resistance of Desmidiaceae, which can be found as high as 2700 m in alpine peat bogs, has been described for photosynthesis, pigments, organelles, cytoskeleton (Meindl and Lütz 1996, Lütz et al. 1997) and experiments will continue. The Desmidiaceae are a well introduced biological system to study cytoskeleton function, recently to understand adaptive and regulatory processes (Holzinger 2000, Holzinger and Lütz-Meindl 2001). The cold stability of the cytoskeleton is not well understood; our planned studies including Desmidiaceae found in ponds in Svalbard, and including snow algae, take up this cellular question with new organisms.

References:

Holzinger, A. 2000: Aspects of cell development in Micrasterias muricata (Desmidiaceae) revealed by cryofixation and freeze substitution. Nowa Hedwigia 70, 2

Longyearbyen
Biology

Geographical Area(s)

Ny-Ålesund

Participants

Participating Scientist

Mag Daniel Remias
University of Innsbruck, Institute of Botany
Innsbruck, Austria

Field Leader

Univ. Prof. Dr Cornelius Lutz
University of Innsbruck, Institute of Botany
Innsbruck, Austria
In this project we will investigate the impact of increased UV radiation on planktonic food webs in the Arctic. The experiments will focus on changes in lipid composition, fatty acids and the nutritional quality of microalgae and zooplankton. UV radiation is a key determinant of oxidation of poly-unsaturated fatty acids (PUFAs) in phytoplankton. These PUFAs cannot be synthesized de novo in zooplankton, but are key molecules for the marine pelagic food web via zooplankton to fish, particularly in the Arctic. Enhanced UV radiation could thus strongly affect structure and energy transfer in these food webs. During our stay in Ny Ålesund we will take samples (phytoplankton and zooplankton) from different depths, under different radiation conditions and during different stages of the spring bloom. Furthermore, we plan feeding experiments in the laboratory with irradiated algae fed to Calanus. The material will be analysed with respect to the fatty acid composition, CHN and P, content of MAA's (mycosporine alike amino acids) and growth parameters.

The data from the field sampling campaign have been analysed and are waiting for statistical analysis now, a publication is in preparation. The experimental part didn't show the expected effects, probably due to low UV doses applied.

Laboratory experiments in Oslo with a number of different diatom cultures revealed clear species-specific differences in their response to UV-radiation.
Biology

Participating Scientist

Anette Wold
Norwegian Polar Institute (NPI),
Tromsø, Norway

Participating Scientist

Wojtek Moskal
Polish Academy of Sciences (PAS), Institute of Oceanology
Sopot, Poland

Field Leader

Eva Leu
University of Oslo (UiO), Biological Institute
Oslo, Norway
Adam Mickiewicz University, Department of Geographical and Geological Sciences, Poznan, Poland

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>"Bioatratigraphy and ecological succession of permian-carboniferous Rugosa corals from Spitsbergen"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Paleontology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Polish</td>
</tr>
<tr>
<td>Institution</td>
<td>Adam Mickiewicz University, Department of Geographical and Geological Sciences, Poznan, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2003 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td></td>
</tr>
<tr>
<td>Programme</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>The project deals with a thorough study of Rugosa corals from Carboniferous and Permian on Spitsbergen. Using the results of my area investigation of the area carried out during my stay on Spitsbergen in 1999 as well as data included in world-wide professional literature I have noticed that it seems very promising that abundant coral fauna may change the existing multi-variant interpretation of the complicated geological structure of Spitsbergen, and in many cases, it can make it more precise. I believe that complementing those studies with new research carried out not only in the West Spitsbergen, along fiord coasts explored the most often, but also inland in, among other places, Polakkfjellet (in this year) and on the adjacent islands of Edgeoya, Barents and Nordaustlandet in the future, will allow for determining the impact of, among other things, abiotic environment on the succession series and ecologic variability of corals. I hope that on the basis of a detailed research of the coral fauna from the entire archipelago, it will be possible to present a systematic development process of the ecosystem taking place not only in time but in space too. Rugosa corals as the most abundant and most precious group of Spitsbergen fossils contain information enabling to determine ecological issues concerning the analysed areas and provide significant data for the local and global stratigraphy of places poor in conodont elements and foraminifers. Due to a small number of studies concerning Rugosa corals on Spitsbergen, the above subject matter may become an important contribution to gap-bridging in stratigraphy, tectonics and broad palaeoecology. I assume that the research results will turn out useful in developing models of geological structure and tectonic evolution of Spitsbergen in Carboniferous and Permian periods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical Area(s)</td>
<td>Serkapp Land, Wedel Jarlsberg Land, Hornsund</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
<td>Dr. Edward Chwieduk</td>
</tr>
<tr>
<td></td>
<td>Adam Mickiewicz University, Department of Geographical and Geological Sciences, Institute of Geology, Poznan, Poland</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Participating Scientist</td>
<td>Bomugil Nowak</td>
</tr>
<tr>
<td></td>
<td>Institute of geology., Poznan, Poland</td>
</tr>
</tbody>
</table>
Remigiusz Palyga
Institute of geology,
Poznan, Poland

Bogumila Kecik
Institute of geology,
Poznan, Poland

Ewa Tarnawska
Institute of geology,
Poznan, Poland

Dr. Edward Chwieduk
Adam Mickiewicz University, Department of Geographical and Geological Sciences,
Institute of Geology
Poznan, Poland
The overall goal of the project is to map the 3D geometry of karst-solution and fracture systems in carbonate sedimentary rock. The motivation is that very little is known about the meter-scale, 3-D architecture of carbonate buildups. Ancient carbonate buildups are of interest for understanding processes of modern reef creation and destruction, for water resources and waste disposal in areas typified by carbonate bedrock, for the geological hazards of building on carbonate bedrock, for resources such as cement and dimension stone, and as an analog for oil-bearing reservoirs in many areas of the world. Although these important geological features are well described in 2D, both on Svalbard and elsewhere, their meter-scale 3D geometry is not well determined. Furthermore, the inter-relationships between the carbonate stratigraphy, the fractures, and the solution features is not well understood. The northern end of Billefjorden, Dickson Land, has world-class exposures of carbonate strata well suited to such study.

This is a short pilot study to determine the feasibility of future work. We integrate classic surface-based geologic mapping with ground-penetrating radar (GPR) and resistivity techniques. Thus we expect to image the subsurface continuation of features we can see on the cliff sides and mountaintops. For this reason we plan to focus on the sides and tops of "Gisafjellet" and "Wordiakammen", on the east side of Petuniabukta. The steep sides and gently-sloping tops of these features are well suited to our geophysical imaging. Furthermore, both the structure and stratigraphy of these carbonate rock exposures have been studied previously, although the relationship of the structure (faults, joints) to the stratigraphy (especially karst dissolution features) was not a focus.

No previous years. This is a pilot study do determine feasibility of future work. However, the following articles are relevant:

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>3D geometry of karst and fractures in carbonate buildups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Geology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Center for Integrated Petroleum Research, University of Bergen, Bergen, Norway</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2004 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Norges Geologisk Undersøkelse, Trondheim, Norway</td>
</tr>
<tr>
<td>Programme</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>The overall goal of the project is to map the 3D geometry of karst-solution and fracture systems in carbonate sedimentary rock. The motivation is that very little is known about the meter-scale, 3-D architecture of carbonate buildups. Ancient carbonate buildups are of interest for understanding processes of modern reef creation and destruction, for water resources and waste disposal in areas typified by carbonate bedrock, for the geological hazards of building on carbonate bedrock, for resources such as cement and dimension stone, and as an analog for oil-bearing reservoirs in many areas of the world. Although these important geological features are well described in 2D, both on Svalbard and elsewhere, their meter-scale 3D geometry is not well determined. Furthermore, the inter-relationships between the carbonate stratigraphy, the fractures, and the solution features is not well understood. The northern end of Billefjorden, Dickson Land, has world-class exposures of carbonate strata well suited to such study. This is a short pilot study to determine the feasibility of future work. We integrate classic surface-based geologic mapping with ground-penetrating radar (GPR) and resistivity techniques. Thus we expect to image the subsurface continuation of features we can see on the cliff sides and mountaintops. For this reason we plan to focus on the sides and tops of "Gisafjellet" and "Wordiakammen", on the east side of Petuniabukta. The steep sides and gently-sloping tops of these features are well suited to our geophysical imaging. Furthermore, both the structure and stratigraphy of these carbonate rock exposures have been studied previously, although the relationship of the structure (faults, joints) to the stratigraphy (especially karst dissolution features) was not a focus.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Dickson Land, Bünsow Land</td>
</tr>
<tr>
<td>Participants</td>
<td>Dr. Walter Wheeler</td>
</tr>
<tr>
<td>Project Leader</td>
<td>University of Bergen, Center for Integrated Petroleum Research, Bergen, Norway</td>
</tr>
</tbody>
</table>
Geology

Participating Scientist

Dr. Alvar Braathen
University of Bergen, Center for Integrated Petroleum Research
Bergen, Norway

Participating Scientist

Jan Rønning
Norges geologisk undersøkelse,
Trondheim, Norway

Participating Scientist

Einar Dalsegg
Norges geologisk undersøkelse,
Trondheim, Norway

Field Leader

Dr. Walter Wheeler
University of Bergen, Center for Integrated Petroleum Research
Bergen, Norway
Project Title
ECLOCAL Prog IPEV 398

Discipline
Geology

Nationality
French / Norwegian

Institution
IPEV French Research Polar Institute

Proj. Period
2003 to 2003

Coop. Inst.
Norwegian Polar Institute

Programme

Description
The main purpose of the project is to outline a structural model for the exhumation of Caledonian high-pressure rocks in NW Spitsbergen. In addition to the more specific structural studies, the area will be remapped for the 1:100,000 geological map A4G Vasahalvøya, which is part of the larger geological mapping program under the Norwegian Polar Institute’s direction. Three weeks of field work will be devoted to the central part of Biscayarhalvøya during July 2003.

The main purpose of the project is to outline a structural model for the exhumation of Caledonian high-pressure rocks in Central Spitsbergen. A two week field study is proposed to further constrain the retrograde history of the new discovered carpholite-bearing schists in Motalafjella.

Results
Fieldwork for the present project in Motalafjella started in 2002 and this years activity will complete the structural mapping and petrological sampling.

Geographical Area(s)
Oscar II Land

Participants

Project Leader

Prof. Laurent Jolivet
Université Pierre & Marie Curie, Laboratoire de Tectonique
PARIS Cedex 05, France

Participating Scientist

Dr. Synnøve Elvevold
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Dr. Claude Lepvrier
Laboratoire de Tectonique,
PARIS Cedex 05, France

Participating Scientist

Pr Bruno Goffe
Laboratoire de Géologie Ecole Normals Supérieure,
Paris, France

Participating Scientist

Dr. Philippe Agard
Laboratoire de Tectonique Université Pierre & Marie Curie,
PARIS Cedex 05, France
Geology

Field Leader

Dr. Loic Labrousse
Laboratoire de Tectonique,
PARIS Cedex 05, France
The aim is a better understanding of the impact of contemporary climatic change (posterior to Little Ice Age) on plant dynamics and the morphodynamic processes active at the glacial margins in polar environments. The selected research field is constituted of the Brøgger Peninsula, where erosion assessments will be evaluated for various processes (frost weathering, runoff, biological weathering, ...). In 2004, we continue, with more precisions, and comparisons, our field research started in 2002. First, we want to produce cartography of plant colonisation and field erosion with very precise scale using GPS and aerial photography. We selected field areas, like Engelsbukta, because this section gives us till deposits and Holocene marine shorelines. So we have a chronological sequence to compare rates of plant colonisation and erosion. We have good results for the last century and we hope to compare with oldest deposits. On the other hand, we continue our investigation about the third goal, rates of erosion of cold processes and weathering. We use Grant Squirell 1022 to have very precise thermic datas like in 2002 for erratic limestone. We use also a Schmidt hammer to know rates of weathering on slope that know paraglacial evolution since the end of glacial period.

Results

ANDRÉ M.-F., 2003 - Do periglacial areas evolve under periglacial conditions ? Geomorphology, 52, 149-164.
Geology

Participants

Project Leader

Dr. Denis Mercier
University of Paris-Sorbonne, UFR of Geography
Paris, France

Participating Scientist

Dr. Dominique Laffly
University of PAU, Department of Geography
Pau, France

Participating Scientist

Prof. Marie-Francoise Andre
UMR 6042 CNRS Maison de la recherche 4,
Clermont-Ferrand, France

Participating Scientist

Dr. Samuel Etienne
UMR 6042 CNRS,
Clermont-Ferrand, France

Participating Scientist

Student Myrtille Moreau
UMR 6042 CNRS,
Clermont-Ferrand, France

Participating Scientist

Prof. Dominique Sellier
University of Nantes, Institute of Geography
Nantes Cedex 03, France

Field Leader

Dr. Denis Mercier
University of Paris-Sorbonne, UFR of Geography
Paris, France
Geotectonic and paleogeographic evolution of the Southern Spitsbergen based on the palaeomagnetic investigations of Paleozoic and Triassic rocks from the Hornsund region.

Discipline
Paleomagnetism

Nationality
Polish

Institution
Institute of Geophysics Polish Academy of Sciences - Laboratory of Palaeomagnetism

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2003 to 2005</th>
</tr>
</thead>
</table>
| Programme Description | The aim of the project is to provide new palaeomagnetic data that would help to elucidate a Palaeozoic and an early Mesozoic geotectonic evolution of the southern Svalbard. The questions concerning the spatial relations among terranes of Svalbard during the early Palaeozoic, relative movements of the archipelago formations with respect to the main neighbouring continents, as well as contribution of different tectonic events on present-day geometry of fold structures may be resolved by palaeomagnetic method. A basis of the method is analysis of the natural remanent magnetization (NRM), which is present and detectable in almost all rock types. Acquired in the ambient geomagnetic field, NRM conserves its orientation within the rock and testifies later movements of the host formation with respect to the geomagnetic axis. A significant advantage of the palaeomagnetic method stems from the fact that it offers a quantitative resolution for relative movements of crustal blocks. Also, it enables us to put an independent time constraints on age of fold structures, brittle tectonics, fluid migration and orientation of the principal stress axes, conclusions that can hardly be made by other methods in absence of superposition evidence. The main problems to be addressed and resolved by this project can be specified as follows:
A. Early Palaeozoic palaeogeography of the Hornsund Terrane will be resolved.
B. Hypothesis on the independent drift of Svalbard composite terrane with respect to Baltica will be tested and verified.
C. Age of selected fold structures will be determined palaeomagnetically and subsequently confronted with current tectonic models.
D. Fissure fills of unknown age will be palaeomagnetically dated and the upper age limit for the related fracturing process will be resolved.
E. Palaeo-stress pattern will be identified and its evolution described.
This year activity:
- continuation of laboratory investigation of the Palaeozoic rocks collected in the Horn |
| Results | In order to test the viability of this project reconnaissance palaeomagnetic studies were carried out over Hornsund area in 1999/2000 (during XXII Institute of Geophysics Polish Academy of Sciences year expedition to Hornsund). Using modern superconducting magnetometer (SQUID) and cleaning devices of the palaeomagnetic lab at our host Institute of Geophysics, we were able to determine NRM components in Cambrian to Triassic rocks with a resolution meeting advanced requirements. Notably, we have demonstrated, for example, that the Cambrian and Ordovician successions possess identifiable NRM components, recorded in magnetite. This promising finding triggered a new expedition in the year 2002 (during XXIV Institute of Geophysics Polish Academy of Sciences year expedition to Hornsund) during which ca. 200 samples from the Palaeozoic formations were collected. The primary results of demagnetisation of the part of collected samples - Carboniferous |
Geology

Geographical Area(s)
- Serkapp Land
- Wedel Jarlsberg Land
- Torell Land

Participants

Project Leader
- **Dr. Marek Lewandowski**
 Polish Academy of Sciences (PAS), Institute of Geophysics
 Warszawa, Poland

Participating Scientist
- **Dr. Jacek Bednarek**
 Polish Academy of Sciences (PAS), Institute of Geophysics, Department of Polar and Marine Research
 Warszawa, Poland

Participating Scientist
- **Msc. Aleksandra Holda - Michalska**
 Institute of Paleobiology Polish Academy of Sciences, Warsaw, Poland

Field Leader
- **MSc Krzysztof Michalski**
 Polish Academy of Sciences (PAS), Institute of Geophysics
 Warszawa, Poland
Geology

Proj. Title
Genesis of hydrothermal mineral deposits in Svalbard

Discipline
Geology

Nationality
Norwegian

Institution
Mineralogical-Geological Museum, University of Oslo (UiO), Norway

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2000 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Bergmesteren på Svalbard, Longyearbyen, Norway. Norwegian University of Science and Technology (NTNU), Trondheim, Norway</td>
</tr>
<tr>
<td>Programme</td>
<td>Genesis of hydrothermally formed mineral deposits in Svalbard. Field mapping of detailed geology in mineral deposits, establishment of mineral paragenesis, minor sampling of minerals for fluid inclusion microthermometry and light stable isotope analysis, in order to establish mineralization sequence, temperature, pressure, fluid salinity, concentration of chemical species in the hydrothermal solution, as input data for thermodynamic modelling of fluid evolution and mineral deposition, as well as finding sources of fluids and their components.</td>
</tr>
<tr>
<td>Description</td>
<td>This year's field work activity is unknown at the time of writing. Field radio communication calls LH2UB (MF/HF); LH2VB and LH2WB (VHF).</td>
</tr>
</tbody>
</table>

Results
The Kapp Mineral (near Isfjord Radio) zinc-lead sulfide mineral deposit was investigated during the summer of 1994. See "Research in Svalbard" 1997 page 98 (Norsk Polarinstitutt, Oslo, 1997). Mineral deposits along the western part of Spitsbergen and Bjørnøya were investigated during the summer of 2000, 2001 & 2002.

Geographical Area(s)
Nordenskiöld Land
Oscar II Land
Haakon VII Land
Bjørnøya

Participants

Project Leader
Tom Victor Segalstad
University of Oslo (UiO), Mineralogical-Geological Museum
Oslo, Norway

Participating Scientist
Dr. Krister Sundblad
Norwegian University of Science and Technology (NTNU), Institute of Geology
Trondheim, Norway

Field Leader
Tom Victor Segalstad
University of Oslo (UiO), Mineralogical-Geological Museum
Oslo, Norway
The project is carried out in the frame of the geological mapping program for Svalbard (GEOKART), and results will be crucial for the compilation of geological maps. The project comprises sedimentological and stratigraphical studies on the Carboniferous/Permian rock formations exposed in NE Spitsbergen (Ny Friesland, Olav V Land) and SW Nordaustlandet (Gustav Adolf Land). Investigations will focus on different lithostratigraphical units of the Billefjorden, Gipsdalen and Tempelfjorden groups. Based on the interpretation of sedimentary structures, lithology, microfacies, geochemical analyses and relative age determinations, depositional processes and paleoenvironments will be reconstructed. During field season 2004 detailed geological mapping will be carried out in NE Spitsbergen (Lomfjorden peninsula and southern areas encircled by Lomfjorden, Veteranen, Kvitbreen and Hinlopenbreen). Within the investigation area, a number of lithological sections will be logged and sampled for laboratory investigations in different type localities.

Participants

Project Leader

Dr. Dierk Blomeier
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Dr. Christian Scheibner
University of Bremen, Department of Geology
Bremen, Germany

Participating Scientist

Dr. Holger Forke
University of Bremen, Department of Geology
Bremen, Germany

Field Leader

Dr. Dierk Blomeier
Norwegian Polar Institute (NPI), Tromsø, Norway
<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Polar Karst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Geology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Polish</td>
</tr>
<tr>
<td>Institution</td>
<td>Stowarzyszenie Klub Speleologiczny AVEN</td>
</tr>
</tbody>
</table>

| **Proj. Period** | 2004 to 2008 |
| **Coop. Inst.** | Speleoklu Dabrowna Gornicza
Polskie Towarzystwo Geograficzne Klub Krasu i Speleologii
Silesian University |

<table>
<thead>
<tr>
<th>Programme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our expedition project include exploring and finding underground karst's streams in areas of south Svalbard Carst. We plan knowing streams boosting the Trollosen source in Hilmarfjellet in year 2004.</td>
</tr>
</tbody>
</table>

| **Results** | This year is the first of our research in Svalbard. |

| **Geographical Area(s)** | **Sørkapp Land** |

| **Participants** |
| **Project Leader** | **Mariusz Polok**
Wyry, Poland |

| **Field Leader** | **Wlodzinierz Porebski**
Katowice, Poland |
HiTIES measures emissions from oxygen and nitrogen simultaneously with the hydrogen H-beta line. A study of the O+ multiplet at 4639-4696 Å in proton and electron aurora has been carried out. This multiplet is blended with the N2+ 1N(1,3) band, which is an important auroral diagnostic emission. A statistical study showed that the brightness of the O+ multiplet in electron aurora is on average 10% of N2+ 1N(0,2) band. The emission cross-section of the multiplet has been estimated. Case studies using the ESR data reveal the dependence of the relative brightness of the oxygen lines on the energies of precipitating electrons. In the studied case it was found that rayed aurora has a significant low energy population, resulting in a flat E-layer ionisation profile and enhanced O+ lines. In a separate case study it has been found that in proton aurora the oxygen multiplet is strongly enhanced.

Measurements of the Doppler shifted Hbeta line, combined with modelling of the auroral ionosphere have resulted in a much better understanding of the role of proton precipitation over Svalbard. Data from the IMAGE satellite, which measures the effects of proton precipitation from space in the UV Lyman alpha emission have been combined with particle data from FAST as input to modelling. Other instruments on the facility are an imaging camera and two photometers. These optical data are used in conjunction with EISCAT Svalbard Radar data.

Measurements of the Doppler shifted Hbeta line, combined with modelling of the auroral ionosphere have resulted in a much better understanding of the role of proton precipitation over Svalbard. Data from the IMAGE satellite, which measures the effects of proton precipitation from space in the UV Lyman alpha emission have been combined with particle data from FAST as input to modelling. Other instruments on the facility are an imaging camera and two photometers. These optical data are used in conjunction with EISCAT Svalbard Radar data.

6. Ivchenko, N., B. S. Lanchester, M. H. Rees, D Lummerzheim, M. Galand, K. Throp and I. Furniss Observat

Geographical Area(s) Longyearbyen
Participants
Project Leader

Dr. Betty Lanchester
University of Southampton, Department of Physics and Astronomy
Hamshire, United Kingdom
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Seismological Station at Ny Ålesund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Seismology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Germany, Norway, USA</td>
</tr>
<tr>
<td>Institution</td>
<td>Alfred Wegener Institute for Polar and Marine Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>1994 to 2004</th>
</tr>
</thead>
</table>
| Coop. Inst. | Institute for Solid Earth Physics, University Bergen, Norway
| | Norwegian Polar Institute, Tromsø,
| | Albuquerque Seismological Observatory, USA
| | Geoforschungszentrum Potsdam, Germany |

<table>
<thead>
<tr>
<th>Programme</th>
<th>KOL 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The seismological vbb-station KBS (very broad band station) at Ny Ålesund is operating since November 1994 and replaces the former WWSSN station operated by the Institute of Solid Earth Physics, University Bergen. With ist modern data acquisition system (Quanterra system, 6-channels) and two sets oh high perfomance broad band and long period seismometers (Streckeisen STS-1 and STS-2 seismometers) the station KBS meets all requirements of a modern seismological station. KBS is integrated into the international Global Seismological Network (GSN) and is also part of the Norwegian Seismological Network. Because of Svalbards isolated location this station is an important contribution to the GSN network by filling a rather large gap in the arctic region. The main task of this station is monitoring the seismic activity on a global scale. Special research interests focus on regional seismicity at and around Svalbard and along the ridges in the arctic ocean. KBS is an open station, e.g., any interested scientist and international organization is allowed to retrieve data of special interest. Data are routinely processed and stored at the IRIS Data Management Center in Seattle and copies are available at the Geoforschungszentrum Potsdam (GFZ). The National Earthquake Information Center (NEIC), USA, frequently refers to KBS recordings for the determination of hypocenter parameters of global earthquakes. Data for processing are retrieved automatically via telephone line by this organization. KBS data are also included into the seismological processing routines of the Norwegian Seismological Network, operated by the University Bergen. Therefore these data contribute also to the monitoring of the seismic activity in Scandinavia and the adjacent arctic regions.</td>
</tr>
</tbody>
</table>

| Results | Onset and phase readings and other parameters of KBS recordings are listed in the
| | o bulletins of the IRIS Data Management Center, Seattle
| | o bulletins of the Norwegian Seismological Network, University Bergen
| | No special publications using only KBS data are known until now |

<table>
<thead>
<tr>
<th>Geographical Area(s)</th>
<th>Ny-Ålesund</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
</table>
| Project Leader | Dr. Alfons Eckstaller
| | Alfred-Wegener-Institute for Polar and Marine Research (AWI),
| | Bremerhaven, Germany |
Institute for Environmental Physics, University of Heidelberg

The active layer, the annually freezing and thawing upper ground in permafrost areas, is of pivotal importance. The moisture and heat transfer characteristics of this layer also determine the boundary layer interactions of the underlying permafrost and the atmosphere and are therefore important parameters input for geothermal or climate modeling. Finally, changes in the characteristics of the permafrost and permafrost related processes may be used as indicators of global ecological change provided the system permafrost-active layer-atmosphere is understood sufficiently well. The dynamics of permafrost soils is measured with high accuracy and high temporal resolution at our two sites close to Ny-Ålesund. Using these continuous data we quantify energy balance components and deduce heat transfer processes such as conductive heat flux, generation of heat from phase transitions, and migration of water vapor. During the summer/fall 2004, the station will be maintained and sensors will be added/replaced.

Continuous high resolution data on soil temperature and liquid water content from a are used to quantify thermal processes in a non sorted circle site close to Ny-Ålesund (Roth and Boike, 2001). It was found that a thicker layer of snow greatly reduced the heat exchange of the permafrost soil with the atmosphere. Soil cooling was about twice as pronounced during the winter of 2000 where the snow cover was about half as thick (about 0.4 m). The melting of the snow cover and possible infiltration of snow meltwater and/or temperature induced vapor flux towards colder layers warmed the permafrost soil at this site down to depths of 0.9 m. An energy balance model was applied to estimate atmospheric, ground heat and snow heat fluxes for snow-covered periods from autumn 1998 to winter 2000. Sensible heat and rain is primarily responsible for winter ablation of snow, while net radiation was primarily responsible for ablation during the spring. The ground heat flux is an important energy sink during spring melt, using between 30 to 50 % of total available energy.

Area(s) Ny-Ålesund

Participants

92
Geophysics

Project Leader

Dr. Julia Boike
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Research Department
Potsdam
Potsdam, Germany

Field Leader

Dipl. Ing. Christian Wille
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Research Department
Potsdam
Potsdam, Germany
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>KOL 02c, Trace gas measurements by Fourier Transform Spectroscopy (NDSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Geophysics</td>
</tr>
<tr>
<td>Nationality</td>
<td>Germany</td>
</tr>
<tr>
<td>Institution</td>
<td>Alfred Wegener Institute, Research Unit Potsdam</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2003 to 2003</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>University of Bremen, Germany</td>
</tr>
<tr>
<td></td>
<td>JPL Pasadena, USA; NASA Langley, USA; NIWA Lauder, New Zealand</td>
</tr>
<tr>
<td>Programme</td>
<td>Network for detection of stratospheric change</td>
</tr>
<tr>
<td>Description</td>
<td>Ground-based FTIR-observations are performed as part of the long-term observations within the NDSC. The measurements are performed half automatically by the NDSC-engineer at the station. Spectra are recorded typically once or twice per week. The analysis of the spectra is performed at the University of Bremen and at AWI. In 2003 it is planned to study the long-term trend of a few tropospheric trace gases, like CO, HCN or C2H6.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Ny-Ålesund</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
</tbody>
</table>
Geophysics

Project Leader

Dr. Justus Notholt
University of Bremen,
Bremen, Germany

Project Leader

Prof. Otto Schrems
Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany

Participating Scientist

Voltaire Velazco
University of Bremen,
Bremen, Germany

Field Leader

Dr. Justus Notholt
University of Bremen,
Bremen, Germany
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>KOP 74, Observation of greenhouse gases by FTIR spectrometry (SOGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Geophysics</td>
</tr>
<tr>
<td>Nationality</td>
<td>German</td>
</tr>
<tr>
<td>Institution</td>
<td>Alfred Wegener Institute, Research Unit Potsdam, Germany</td>
</tr>
</tbody>
</table>

Proj. Period	2004 to 2004
Cooper. Inst.	University of Bremen, Germany
	JPL Pasadena, USA;
	NASA Langley, USA;
	NIWA Lauder, New Zealand

Programme

The aim of the project is to develop a cost-effective long-term European observation system for halocarbons and to predict and assess impacts of the halocarbons on the climate and on the ozone layer. In 2003 we will concentrate on measurements and analysis of three CFC's, CFC-11, CFC-12 and CFC-22. This requires considering the interfering gases, mainly water, in the correct way. The spectra are recorded within the NDSC activities by the NDSC-engineer at the station typically once per week.

Results

In 2002 the measurements were performed on a continuous basis. Up the now, the long-term trend of CFC-12 and CFC-22 since 1995 until present have been studied. Currently, we are concentrating on improvements in the measurement techniques for the CFC’s and SF6. In the analysis we concentrated on the study of the seasonal and long-term variability of SF6.

Geographical Area(s)

Ny-Ålesund

Participants

Project Leader

Dr. Justus Notholt

University of Bremen,
Bremen, Germany

Project Leader

Prof. Otto Schrems

Alfred-Wegener-Institute for Polar and Marine Research (AWI),
Bremerhaven, Germany
Long term validation of the SCIAMACHY satellite instrument on board ENVISAT by ground-based FTIR spectrometry.

Solar and lunar spectra will be recorded on a regular basis (once to twice a week), and are transferred automatically to AWI and University of Bremen for analysis. This work is done by the Koldewey Station engineer, who will be supported by a scientist in summer for alignment of the instrument.

Measurements performed in 2002/2003 have been analyzed and submitted to the validation database. Comparisons with first analyzed SCIAMACHY data have been performed.

Geophysics

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>University/Institute</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
<td>Dr. Justus Notholt</td>
<td>University of Bremen, Bremerhaven, Germany</td>
<td></td>
</tr>
<tr>
<td>Project Leader</td>
<td>Prof. Otto Schrems</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany</td>
<td></td>
</tr>
<tr>
<td>Field Leader</td>
<td>Dr. Astrid Schulz</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), Research Department Potsdam, Germany</td>
<td></td>
</tr>
<tr>
<td>Field Leader</td>
<td>Dr. Thorsten Warneke</td>
<td>University of Bremen, Institute of environmental physics Bremen, Germany</td>
<td></td>
</tr>
</tbody>
</table>
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Polarstern Cruise ARK XX/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Oceanography</td>
</tr>
<tr>
<td>Nationality</td>
<td>Germany</td>
</tr>
<tr>
<td>Institution</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2004 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Max Planck Institute for Chemistry, GKSS Research Center</td>
</tr>
<tr>
<td>Programme Description</td>
<td>Work on Svalbard will be part of the Polarstern Expedition ARK XX/2 aiming for oceanographic, petrologic, bathymetric and geological work in Fram Strait and north of Svalbard. Measuring the Sea Ice thickness using a helicopter borne induction device (EM-bird) will be a main goal of the cruise. For sea ice thickness accuracy and system enhancements it is of great benefit to land the EM-bird on a Glacier within helicopter range from the ship for half a day once or twice during the expedition. Measuring on the surface of a glacier provides the unique opportunity to study the technical drift of the system far away of any electrical conductor, as glaciers are almost perfect resistors. Polarstern will be west of Prins Karls Forland in the second half of July, making it suitable to fly the EM-bird to the Murraybreen at ca. 78°43’ N, 10° 55’W. Due to bad weather the target area could be shifted to Albert I Land in August, as Polarstern will be operating north of Svalbard then. We won’t take samples or do any drillings but only land the system on a remote place and keep it there for some hours. As a ground crew is needed to land the bird, the operation will involve 2 helicopters. One aircraft with the ground crew lands first and helps the pilot of the second helicopter to land the bird. Once the system is on the ground, the Helicopters are not needed until flying back to the ship. The suggested position is not compulsory and can be changed to any other location on a glacier at least 300 m thick.</td>
</tr>
<tr>
<td>Results</td>
<td>This type of investigation has never been published or carried out so far. A comparable trial experiment was conducted by Pfaffling and Bishop in Antarctica last October and yielded very promising results. System Drift is however a key problem in Helicopter EM work. Deszcz-Pan, M., Fittermann, D. V. and Labson, V.F., 1998, Reduction of inversion errors in helicopter EM data using auxiliary information: Expl. Geophys. 29, 142-146. Fitterman, D. V., 1998, Sources of calibration errors in helicopter EM data: Expl. Geophys. 29, 65-70.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Prins Karls Forland, Albert I Land, Haakon VII Land</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
</table>
Geophysics

Project Leader

Prof. Dr. Peter Lemke
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Participating Scientist

John Bishop
Mire Geophysics Pty Ltd,
Sandy Bay, Australia

Participating Scientist

Jan Lieser
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany

Field Leader

Andreas Pfaffling
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven
Bremerhaven, Germany
The meteorological conditions and climatic modifications study in Spitsbergen

Discipline
Meteorology

Nationality
Russian

Institution
Arctic and Antarctic Research Institute (AARI), St. Petersburg, Russia

Proj. Period
2001 to 2010

Description
In 2004 AARI plans to study the meteorological conditions and climatic modifications in Svalbard. The activity will include:
- The study of radiating characteristics of a snow and ice,
- The study of the snow cover on the rivers basins,
- Mass balance research of some West Spitsbergen glaciers,
- Water balance of some Svalbard rivers,
- Chemical sampling of river waters,
- Operation of hydrometric station and freshwater runoff research during melting period,
- The study of relict swamps for the reconstruction of modification paleogeographic's conditions in Holocene,
- The oceanographic observations in the Isfjord and Gronfjord areas,
- The man adaptation mechanisms to extreme climatic conditions study.

Results
10. B. Ivanov, O. Andreev, A. Bezgreshnov, 2003. Preliminary investigations results of snow cover properties on Spitzbe
Geophysics

Geographical Area(s)
Prins Karls Forland
Barentsburg
Pyramiden
Barents Sea

Participants

Participating Scientist
Dr. Mikhail Tretyakov
Arctic and Antarctic Research Institute (AARI),
St. Petersburg, Russia

Field Leader
Irina Solovyanova
Arctic and Antarctic Research Institute (AARI),
St. Petersburg, Russia
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>EPIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Atmospheric Physics</td>
</tr>
<tr>
<td>Nationality</td>
<td>French</td>
</tr>
<tr>
<td>Institution</td>
<td>Centre National de la Recherche Scientifique. Service d'Aéronomie</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2002 to 2008</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Observatoire de haute Provence, Laboratoire de Planétologie</td>
</tr>
</tbody>
</table>

Programme

Description:
The investigation is dedicated to the study of the upper atmosphere dynamics in the polar cap, a region where there is a direct influence of the solar particles on the Earth's atmosphere. The dynamics is observed by means of an interferometer. The instrument started its measurements in November 2002. The instrument is placed in a shelter at the Auroral Optical station, and it is operated from Observatoire de Haute Provence (France). We experienced some technical problems which lead to organize a mission by a technician after a remote investigation and some help received locally. These problems have been solved.

Results

An important fact is the local meteorological conditions of observations. Cloudy sky is frequent, and is a limitation to our scientific return. However, on 28 October a large Coronal Mass Ejection occurred. When the particles arrived in the upper atmosphere by November 30, the conditions of measurements above Svalbard were acceptable, and we have observed the dramatic effect of the particles on the line intensity and wind velocity in the thermosphere. For the latter, the speed was increased up to 500 m/s, the zonal component being more perturbed than the meridional component, this effect being still persistent one day after the particles arrival. These results have been reported at the European Geosciences Union (Nice, April, 2004).

Geographical Area(s)

Longyearbyen

Participants

Project Leader

Dr. Gérard Thuillier
Service d’Aéronomie du CNRS, Verrières le Buisson, France

Participating Scientist

Dr. Michel Hersè
Service d’Aéronomie du CNRS, Verrières-le Buisson, France

Field Leader

Dr. Gérard Thuillier
Service d’Aéronomie du CNRS, Verrières le Buisson, France
This year we will focus upon nutrient dynamics and runoff pathways in the catchment. We will therefore monitor runoff quantity and quality, collect snow, meltwater and ice samples, monitor meteorological conditions on the glacier and also undertake an intensive dye tracing programme.

Fluxes of water and solute, leading to estimation of rates of chemical denudation have been published.

Geographical Area(s) Ny-Ålesund

Participants

Project Leader

Dr. Andrew Jonathan Hodson
University of Sheffield, Department of Geography
Sheffield, United Kingdom

Participating Scientist

Mr Tristram Irvine-Fynn
University of Sheffield, Department of Geography
Sheffield, United Kingdom

Participating Scientist

Dr. Edward Hanna
University of Sheffield, Department of Geography
Sheffield, United Kingdom
Geophysics

Participating Scientist

Ms Anita Asadullah
University of Sheffield, Department of Geography
Sheffield, United Kingdom

Field Leader

Dr. Andrew Jonathan Hodson
University of Sheffield, Department of Geography
Sheffield, United Kingdom
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Allsky cameras in Longyearbyen and Ny Alesund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Geophysics</td>
</tr>
<tr>
<td>Nationality</td>
<td>Finnish-Italian</td>
</tr>
<tr>
<td>Institution</td>
<td>Finnish Meteorological Institute, Geophysical Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2003 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Istituto di Fisica dello Spazio Interplanetario del CNR, Rome, Italy (IFSI/CNR)</td>
</tr>
<tr>
<td>Programme</td>
<td>MIRACLE (http://www.geo.fmi.fi/MIRACLE)</td>
</tr>
<tr>
<td>Description</td>
<td>The cameras acquire during dark periods auroral images at three wavelengths, 557.7, 427.8 and 630.0 nm. The sample rates are 20, 60, 60 sec respectively.</td>
</tr>
<tr>
<td>Results</td>
<td>The images are used together with other MIRACLE observations and satellite data in the research of auroral morphology or ionospheric electrodynamics, e.g. Kauristie et al., (Annales Geophysicae, 19, 1613-1640, 2001 or Massetti et al., (Journal of Geophysical Research, 107, 1255, 2002)</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Longyearbyen</td>
</tr>
<tr>
<td></td>
<td>Ny-Ålesund</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Project Leader</th>
<th>Dr. Kirsti Kauristie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finnish Meteorological Institute, GEO</td>
</tr>
<tr>
<td></td>
<td>Helsinki, Finland</td>
</tr>
<tr>
<td></td>
<td>Dr. Stefano Orsini</td>
</tr>
<tr>
<td></td>
<td>Istituto di Fisica dello Spazio Interplanetario (IFSI-CNR), Roma, Italy</td>
</tr>
<tr>
<td></td>
<td>Dr. Kari Pajunpaa</td>
</tr>
<tr>
<td></td>
<td>Finnish Meteorological Institute, Geophysical Research, Helsinki, Finland</td>
</tr>
<tr>
<td>Field Leader</td>
<td>Stefan Claes</td>
</tr>
<tr>
<td></td>
<td>University Centre on Svalbard (UNIS), Longyearbyen, Norway</td>
</tr>
</tbody>
</table>
Size-fractionated atmospheric aerosols are continuously collected at the Zeppelin mountain station in Ny-Ålesund, Spitsbergen. The sampling device used consists of a modified Sierr-Andersen Hi-Vol cascade impactor, which separates the aerosol into a coarse and a fine size fraction. The collections are performed according to a 2-2-3-day schedule. The samples are analyzed for sulphate, methane sulphonate (MSA), and several other anionic and cationic species. The data sets are examined with receptor models and/or related to air mass trajectories in order to identify the major source regions of the various species, to evaluate the impact of each region, and to assess the extent of the anthropogenic perturbation.

The atmospheric concentration data (in the <2.5 micrometer size fraction) for the 10-year period from 1991 through 2000 were examined. The anthropogenic elements As and Sb exhibited a clear seasonal cycle, with much lower levels during summer than during winter/early spring. For As, the summer levels were about 50 times lower than the winter/early spring levels, whereas for Sb they were about 30 times lower. Also non-sea-salt Br showed a clear seasonal cycle. The highest levels were observed in the period from March to mid-May, the lowest values in the period July through October, and the difference between both periods was about a factor of 20. Se and I exhibited much less variability, but also these two elements showed clear seasonal cycles, with for Se higher levels in winter/early spring than in summer. Iodine, on the other hand, had maxima in spring (March-April) and in fall (October). Natural sources, especially marine biogenic sources, are most likely quite important for both elements. Non-sea-salt (nss) sulphate was lower during summer than during the rest of the year, but the summer/winter difference remained limited to about a factor of 10. Methanesulphonic acid, a gas-to-particle conversion product of dimethylsulphide from marine phytoplankton, was very low during winter, increased steadily between day 100 and day 120 of the year, and remained high during the entire summer. The contributions from marine biogenic and from anthropogenic sources to the fine nss-sulphate during summer (June-July-August) were estimated: 38% of the fine nss-sulfate in summer was on average attributed to the marine biogenic source, but that attribution was around 50% for 1991 and 1994, versus only 20% for 1993 and 1998. The 10-year data set for the <2.5 micrometer size fraction was also subjected to principal component analysis (PCA) in order to examine the interrelations between the various chemical species and elements and to identify the major aerosol components (source types).
Geophysics

Project Leader

Prof. Dr. Willy Maenhaut
University of Gent, Institute for Nuclear Sciences
Gent, Belgium

Participating Scientist

Dr. Jan Erik Hanssen
Norwegian Institute for Air Research (NILU),
Kjeller, Norway

Participating Scientist

Xuguang Chi
University of Gent, Institute for Nuclear Sciences
Gent, Belgium

Participating Scientist

Nico Raes
University of Gent, Institute for Nuclear Sciences
Gent, Belgium

Field Leader

Prof. Dr. Willy Maenhaut
University of Gent, Institute for Nuclear Sciences
Gent, Belgium
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Chemistry of mercury in polar areas (CHIMERPOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Nationality</td>
<td>French</td>
</tr>
<tr>
<td>Institution</td>
<td>Institut Paul Emile Victor - Technopôle Brest-Iroise - BP 75-29280 PLOUZANE- FRANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2004 to 2004</th>
</tr>
</thead>
</table>
| Coop. Inst. | Laboratoire de Glaciologie et Géophysique de l'Environnement du CNRS - 54, Rue Molière- BP 96- 38402 Saint Martin D'hères cedex- FRANCE
Groupe de Recherche sur l'Environnement et la Chimie Atmosphérique- 39-41, Boulevard Gambetta- 38000 Grenoble- FRANCE |

<table>
<thead>
<tr>
<th>Programme</th>
<th>This program is a part of a large program with Italian, German, American, Norwegian, Canadian teams.</th>
</tr>
</thead>
</table>
| Description | The field annual scientific programme will be organised with four experimental studies :
1-Study of mercury dynamic in the snowpack taking into account the previous results obtained in Station Nord in 2002.
2- Studies under simulated conditions chemistry and photochemistry of Hg in the snowpack.
3-Atmospheric particulate mercury speciation. A way to better understand deposition fluxes of Hg to the snow pack.
4-Air/snow/firn/ice transfer fonction determinatio. |

| Results | The study of mercury dynamic in the seasonal snow pack has started for our group in 1998. The first studies were devoted to the speciation of mercury in Alpine snow, where we showed that reactive mercury was probably photoreduced in the snow. After these studies in Alpine snow, we started an important research program with the French Polar Institute (IPEV) for the study of mercury speciation in the air above snow, in the air of snow, and in snow. Two important field campaigns have been organised in the Arctic, one in Station Nord, Greenland from February to March 2002 shortly after polar sunrise and April in Kuujjuarapik, Quebec. During these field campaigns:
* A new device dedicated to Hg° measurement in the air of snow has been build.
* We observed both in Greenland and Quebec an exponential decrease of Hg° in the air of snow anti-correlated with an increase of total Hg in snow, indicating an oxidative chemistry involving halogenated compounds.
* We observed a production of Hg° in the air of the snow pack directly linked with photochemical activity and production of photochemical species in the air of snow like HO2, Br, and BrO radicals. The aim of this 2003 campaign is to go deeper in these mechanisms so as to better understand this very active chemistry for that metal. References:
Dommergue A., Ferrari C.P., Poissant L., Gauchard P.A., Boutron C.F. Production of mercury in the air of the ...etc |

109
Geophysics

Geographical Area(s)
Oscar II Land
James I Land

Participants

Project Leader

Dr. Christophe Ferrari
Institut Paul Emile Victor, Laboratoire de Glaciologie et Géophysique de l'Environnement
Saint Martin D'hères cedex, France

Participating Scientist

Ing. Olivier Magand
Institut Paul Emile Victor, Laboratoire de Glaciologie et Géophysique de l'Environnement
Saint Martin D'hères cedex, France

Participating Scientist

PhD Pierre-Alexis Gauchard
Institut Paul Emile Victor, Laboratoire de Glaciologie et Géophysique de l'Environnement
Saint Martin D'hères cedex, France

Participating Scientist

PhD Pierre Amato
Laboratoire de Météorologie Physique (LAMP)- Université Blaise Pascal (Clermont-Ferrand II) bat. Phy,
AUBIERE CEDEX, France

Field Leader

Dr. Christophe Ferrari
Institut Paul Emile Victor, Laboratoire de Glaciologie et Géophysique de l'Environnement
Saint Martin D'hères cedex, France
The objective of this investigation is to study substances that affect the climate, and in this case it concerns carbon dioxide and atmospheric aerosols over Spitsbergen (Svalbard). The observations aim towards:

- detecting any long-term trends in the carbon dioxide level, as well as any trends in the amount or composition of aerosols in the background atmosphere.
- provide a basis to study processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere.
- provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of CO2 in the atmosphere.
- contribute to the global network of stations that perform continuous measurements of atmospheric particles and trace gases to determine their effect on the Earths radiation balance and interaction with clouds and climate.

Measurement of carbon dioxide is an ongoing activity on the Zeppelinstation since 1998. Between 1998 and March 2003 the mean rate of increase has been 1.2 ppm per year and the annual amplitude (between summer minimum and winter maximum) is 17.7 ppm. Aerosol particles also present a marked annual cycle. The late winter and spring period is strongly influenced by anthropogenic sources in Europe and North America. The summer period shows small total particle masses, but is the period with the highest number densities that often exceeds many thousand particles per cubic centimeter. During late fall and early winter the aerosol is aged and number densities are often below 100 cm-3. Ström, J., Umegård, J., Tørseth, K., Tunved, P., Hansson, H.-C., Holmén, K., Wismann, V., Herber, A. and König-Langlo, G., One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001, J. Phys. Chem. Earth, 28, 1181-1190, 2003.

Geographical Area(s) Ny-Ålesund

Participants

Dr. Johan Ström
University of Stockholm, Institute of Applied Environmental Research
Stockholm, Sweden
Geophysics

Participating Scientist

Mrs. Birgitta Noone
Stockholm University, Institute of Applied Environmental Research
Stockholm, Sweden

Participating Scientist

Mr Juri Waher
Stockholm University, Institute of Applied Environmental Research
Stockholm, Sweden

Field Leader

Dr. Johan Strøm
University of Stockholm, Institute of Applied Environmental Research
Stockholm, Sweden
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>ISPOG - Internal Structure and Bedrock of the Polythermal Glaciers in SW Spitsbergen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Glaciology</td>
</tr>
<tr>
<td>Nationality</td>
<td>International</td>
</tr>
<tr>
<td>Institution</td>
<td>Institute of Geophysics of the Polish Academy of Sciences, Warsaw, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2003 to 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Institute of Geography of the Russian Academy of Sciences, Moscow, Russia</td>
</tr>
<tr>
<td></td>
<td>Departamento de Matemática Aplicada ETSI de Telecomunicación, Universidad</td>
</tr>
<tr>
<td></td>
<td>Politécnica de Madrid, Spain</td>
</tr>
<tr>
<td></td>
<td>Faculty of Earth Sciences of the University of Silesia, Sosnowiec, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme</th>
<th>MAGICS - Mass Balance of Arctic Ice Sheets and Glaciers in Relation to the Climate and Sea Level Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Radioechosounding measurements on Hansbreen and radar profiling of a few glaciers on top of the Amundsenisen Plateau.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geographical Area(s)</th>
<th>Wedel Jarlsberg Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torell Land</td>
</tr>
<tr>
<td></td>
<td>Hornsund</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Dr. Piotr Glowacki
Polish Academy of Sciences (PAS), Institute of Geophysics, Department of Polar and Marine Research
Warszawa, Poland

Participating Scientist

Dr. Andrey F. Glazovsky
Russian Academy of Sciences (RAS), Institute of Geography
Moscow, Russia

Field Leader

Dr. Piotr Glowacki
Polish Academy of Sciences (PAS), Institute of Geophysics, Department of Polar and Marine Research
Warszawa, Poland
Developed in the frame of the Space Physics research, the project aims to monitor and study the high-latitude auroral activity, focusing on the dayside auroras, by means of two all-sky cameras located in Ny-Ålesund (Svalbard) and Daneborg (East coast of Greenland). The data acquisition period ranges from the mid-October to the end of March. Usually, a week for maintenance purpose is planned in Ny-Ålesund, at the beginning of the observational period (3rd or 4th week of October).

In 2002, the second ITACA² station was set up in Greenland, while a new all-sky camera was installed in the station of Ny-Ålesund. During the present winter season, for the first time, were achieved conjugated optical auroral observation from the two ITACA² stations and a preliminary analysis is in progress.

- Massetti S., S. Orsini, M. Candidi and K. Kauristie: Dayside pulsed aurora intensifications, observed by ITACA during constant IMF Bz ~ 0 and By << 0, JGR, 10.1029/2001JA009204, September, 2002.

Geographical Area(s) Ny-Ålesund

Participants

Project Leader
Stefano Massetti
Istituto di Fisica dello Spazio Interplanetario (IFSI-CNR), Roma, Italy

Participating Scientist
Pasquale Cerulli-Irelli
Istituto di Fisica dello Spazio Interplanetario (IFSI-CNR), Roma, Italy
Geophysics

Field Leader

Stefano Massetti
Istituto di Fisica dello Spazio Interplanetario (IFSI-CNR),
Roma, Italy
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>AREX 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Oceanography</td>
</tr>
<tr>
<td>Nationality</td>
<td>polish/international</td>
</tr>
<tr>
<td>Institution</td>
<td>Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2004 to 2004</th>
</tr>
</thead>
</table>

| **Coop. Inst.** | Gdansk University, Norsk Polar Institute, Alfred Wegener Institut (Bremerhaven) Institute of Marine Research (Bergen), Universite Pierre et Marie Curie (France) |

<table>
<thead>
<tr>
<th>Programme</th>
<th>Arctic Subarctic Ocean Fluxes (ASOF), BIODAF, LITUS</th>
</tr>
</thead>
</table>

| **Description** | Measurements of temperature and salinity of sea water (CTD), ocean currents (ADCP) optical and acoustical properties of sea water, phito, zooplankton and benhos sampling in the area Norway-Spitsbergen, Storfjord and Storfjordrenna, West Spitsbergen Current, Kongsfjord, Hornsund and Bellsund. |

| **Geographical Area(s)** | Longyearbyen Ny-Ålesund Hornsund Barents Sea Norwegian Sea Greenland Sea Arctic Ocean |

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
</table>

| **Prof. Dr. Jan Piechura** | Polish Academy of Sciences (PAS), Institute of Oceanology Sopot, Poland |

<table>
<thead>
<tr>
<th>Field Leader</th>
<th></th>
</tr>
</thead>
</table>

| **Prof. Dr. Jan Piechura** | Polish Academy of Sciences (PAS), Institute of Oceanology Sopot, Poland |
The project seeks to investigate the nature of perennial spring s at high latitudes and to understand their interaction with permafrost. The research on Svalbard will complement previous research that my team and I have been conducting on springs on Axel Heiberg Island in the Canadian High Arctic. The 2004 activities will consist on photographing the spring outlets, collecting surface water samples (approx. 1.5 litres), and taking small (100 g) samples of surface travertine deposits around the spring outlets, where they exist.

Results
First year.

Geographical Area(s)
Ny-Ålesund

Participants

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
<td>Wayne Pollard</td>
<td>McGill University, Dept. of Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montreal, Quebec, Canada</td>
</tr>
<tr>
<td>Field Leader</td>
<td>Ms Nicole Couure</td>
<td>McGill University, Department of Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montreal, Quebec, Canada</td>
</tr>
</tbody>
</table>
The Kaffiøyra region (Oscar II Land) is a traditional study area of polar expeditions organized by the Institute of Geography. Since 1975, 17 expeditions have been organized. The amount of publications is about 300. During 2001 we are planning:
Continuation of the mass balance measurements, its include the winter balance, summer balance and net balance; the outflow from glaciers of the Kaffiøyra and selected the ecology problems of this region.

The Waldemarbreen is located in the Oscar II Land, northwestern Spitsbergen. It is of the alpine type and flows down a valley to the Kaffiøyra. With the area of 2.68 km², the Waldemarbreen occupies 61% of a catchment basin closed by ice-cored moraines at the water gap. The firm field occurs at 380-490 m a.s.l. and the snout at 130 m a.s.l. The glacier is composed of two parts, separated by a median moraine, 1600 m long. The foreland occupies 0.44 km². The Kaffiøyra region together with the adjacent glaciers the Aavatsmark (75 km²), and the Dahl (132 km²) and six glaciers running off in its direction (28 km²) cover the area of 310 km². Mountain ranges, valley glaciers and their marginal zones together with the Kaffiøyra Plain cover 103 km². Since the nineteenth century the surface of the Kaffiøyra glaciers has decreased by approximately 30%. The Waldemarbreen has been retreating intensively lately and the glacier surface has been lowered at 1% every year. Annual mean air temperature of this area is about 4.6 °C. Detailed investigations into the glacier mass balance have been conducted since 1995.
Field Leader

Prof. Marek Grzes
Nicholas Copernicus University, Department of Cryology and Polar Research, Institute of Geography
Torun, Poland
Geophysics

Proj. Title
Svalbardtøkt 2004

Discipline
Hydrographic Survey

Nationality
Norwegian

Institution
Norwegian Hydrographic Service (NHS)

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2003 to 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Norwegian Defense Research Establishment</td>
</tr>
</tbody>
</table>

Programme
Collection of multibeam echosounder data for chart production.

Results
Collection of multibeam echosounder data for chart production.

Geographical Area(s)
Wedel Jarlsberg Land
Prins Karls Forland
Albert I Land

Participants

Project Leader
Stig Øvstedal
Norwegian Hydrographic Service (NHS), Stavanger, Norway

Participating Scientist
Mr Odd Harald Njærheim
NHS, Stavanger, Norway

Field Leader
Mr Edgar Rasmussen
NHS, Stavanger, Norway
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Monitoring Heavy Metals and Organic Pollutants in Air at Svalbard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Atmospheric Chemistry</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Institute for Air Research (NILU), Kjeller, Norway</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2003 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Norwegian Polar Institute</td>
</tr>
<tr>
<td>Programme</td>
<td>Arctic Monitoring and Assessment Programme (AMAP)</td>
</tr>
<tr>
<td>Description</td>
<td>Monitoring air levels of heavy metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and chlorinated pesticides (hexachlorocyclohexanes, DDT and chlordane) since 1993. Results are reported to and stored in the AMAP database and reported annually to the Norwegian State Pollution Authority (SFT). The data are included in the annual report from the air and precipitation chemistry monitoring network in Norway, "Atmosfærisk tilførsel".</td>
</tr>
<tr>
<td>Results</td>
<td>Results are reported to and stored in the AMAP database and reported annually to the Norwegian State Pollution Authority (SFT). The data are included in the annual report from the air and precipitation chemistry monitoring network in Norway, "Atmosfærisk tilførsel".</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Ny-Ålesund</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Stein Manø

Norwegian Institute for Air Research (NILU), Kjeller, Norway
<table>
<thead>
<tr>
<th>Geophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj. Title</td>
</tr>
<tr>
<td>Discipline</td>
</tr>
<tr>
<td>Nationality</td>
</tr>
<tr>
<td>Institution</td>
</tr>
</tbody>
</table>

| **Proj. Period** | 1986 to 2004 |
| **Coop. Inst.** | Norwegian Coast Guard
Norwegian Polar Institute
The Governor of Svalbard |

Programme

Description
Maintenance of Automatic Weather Stations at Ny-Ålesund, Edgeøya, Verlegenhuken and Karl XII øya.
Maintenance of Meteorological equipment at Airports in Ny-Ålesund, Longyearbyen and Svea.

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical Area(s)</td>
</tr>
</tbody>
</table>

Orvin Land
Edgeøya
Longyearbyen
Ny-Ålesund
Sveagruva

<table>
<thead>
<tr>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
</tr>
</tbody>
</table>

Head of Section Ragnar Brækkan
Norwegian Meteorological Institute (DNMI),
Oslo, Norway

<table>
<thead>
<tr>
<th>Participating Scientist</th>
</tr>
</thead>
</table>

O.Ing. Gunnar Halvorsen
Meteorological Institute,
Oslo, Norway

<table>
<thead>
<tr>
<th>Field Leader</th>
</tr>
</thead>
</table>

Head of Section Ragnar Brækkan
Norwegian Meteorological Institute (DNMI),
Oslo, Norway
The project "Parameterisation of snow and ice albedo in ECHAM5 General Circulation Model (GCM)" is a cooperation project between Norwegian Polar Institute, University of Tromsø, Max Planck Institute for Meteorology in Hamburg, NASA Goddard Space Flight Center in Maryland, Arctic Antarctic Research Institute in St. Petersburg, Swiss Federal Institute of Technology (ETH) in Zürich, The Norwegian Meteorological Institute and Norwegian Computing Centre.

Snow and ice albedo is known to be crucial for heat exchange at high latitudes. Even so, the way snow and ice albedo is parameterised in GCMs today is strongly simplified. By developing characteristic spectral albedo curves for different snow and sea-ice surfaces, and combine this with ground truth and satellite data, we want to improve the albedo parameterisation, by introducing spectral resolution and developing more realistic decay functions.

This year activity includes the collection of data, the intercomparison of already existing models, and the validation of the best model. The work consists of two parts, one dealing with snow on ground and the other with sea ice. The collected time series data over snow covered surfaces include a 20 year time series from Ny-Ålesund, Svalbard, three years of data from Col de Porte, French Alps, six years of data from six stations in the Former Soviet and 12 years of data from Barrow, Alaska. The sea-ice part is covered by data from the Russian Drifting Ice stations in the Arctic Ocean, and the high quality one year data from the SHEBA experiment, also in the Arctic Ocean. Snow and sea-ice albedo parameterisations from 8 different global climate models are compared and validated against these datasets. The models include ECHAM5, UKMO, ECMWF, CLASS, ISAB, GISS, BATS and an one-dimensional thermodynamic sea-ice model by Ebert and Curry, 1993. For comparison a completely data-based regression model is built and compared to the parameterisations in the global climate models.

Albedo and reflectance data with spectral resolution is also collected, and this includes several datasets from the Svalbard area, data from the SHEBA experiment and also data from the Alps and Antarctic. This data will be used to develop characteristic spectral reflectance curves for each key cryospheric surface. For snow we want to develop one curve for each of the classes defined by the International Classification of Seasonal Snow on the Ground by Colbeck.

However, for the sea ice albedo parameterisation it is different. The schemes that exists today for sea-ice is clearly too simple, and a more advanced sea-ice parameterisation
Geophysics

Geographical Area(s)
- Nathorst Land
- Nordenskiöld Land

Participants

Project Leader

Dr. Jan-Gunnar Winther
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist

Ph.D Student. Christina Pedersen
Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Field Leader

Frank Nilsen
University Centre on Svalbard (UNIS), Longyearbyen, Norway
The mass balance of Midtre Lovenbreen and Austre Brøggerbreen have been monitored since 1967 and Kongsvegen since 1987. The first two are the longest continuous mass balance series from the Arctic.

The mean net balance for Austre Brøggerbreen and Midtre Lovenbreen have been negative for the whole measuring period while the balance for Kongsvegen is close to zero.

Participants

Project Leader
Dr. Jack Kohler
Norwegian Polar Institute (NPI), Tromsø, Norway

Participating Scientist
Prof. Jon Ove Hagen
University of Oslo (UiO), Department of Physical Geography, Oslo, Norway
Geophysics

Participating Scientist

Cecilie Rolstad
Norwegian Polar Institute (NPI),
Tromsø, Norway

Participating Scientist

Dr. Kjetil Melvold
University of Oslo (UiO), Institute of Physical Geography
Oslo, Norway

Participating Scientist

Dr. John Moore
University of Rovaniemi, Arctic Center
Rovaniemi, Finland

Field Leader

Dr. Elisabeth Isaksson
Norwegian Polar Institute (NPI),
Tromsø, Norway

Field Leader

Dr. Jack Kohler
Norwegian Polar Institute (NPI),
Tromsø, Norway
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Solar Radiation Monitoring at Sverdrup Station, Ny-Ålesund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Atmospheric Physics</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Norwegian Polar Institute</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>1974 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Alfred Wegener Institute, Norwegian institute for Air Research</td>
</tr>
<tr>
<td>Programme Description</td>
<td>Regular calibration and intercomparison of broadband radiation sensors (pyranometers, pyrgeometers, pyrheliometers, PAR-sensors), UV-biometers and UV-spectrometer. Measurements of surface spectral albedo at selected typical surfaces for the determination of regional albedo in support of the ASTAR2004 campaign by AWI and NIPR.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Ny-Ålesund</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Dr. Jon Børre Ørbæk
Norwegian Polar Institute (NPI),
Longyearbyen, Norway

Field Leader

Dr. Jon Børre Ørbæk
Norwegian Polar Institute (NPI),
Longyearbyen, Norway
Geophysics

Proj. Title Permanent observations of changes of terrestrial geophysical fields and anviromental monitoring

Discipline Geophysics

Nationality Polish

Institution Polish Academy of Sciences (PAS), Institute of Geophysics, Poland.

Proj. Period 1978 to 2004

Coop. Inst. Arctic Center, University of Lapland, Rovaniemi, Finland.
Institute of Geography Russian Academy of Sciences, Moscow.
Geophysical Research Division of the Finnish Meteorological Institute, FMI/GEO, Finland.
NORSAR, Norway
University of Silesia, Poland.
Space Research Center, Polish Academy of Sciences, Poland.
Institute of Oceanology Polish Academy of Sciences, Poland.
Universidad Politecnica de Madrid, Spain

Description Continuation of the permanent measurements and registrations started in 1978
1) Permanent measurements of magnetic field elements.
2) Monitoring of earthquakes and icequakes.
3) Atmospheric electricity measurements.
4) Ionospheric measurements.
5) Examination of local values of meteorological elements.
6) Examination of hydrological, glaciological and hydrochemical conditions. Photogrammetric and laser survey of the dynamics of Hansbreen.
7) Environmental monitoring of selected climatic features and analyses of chemical buildup, air and water pollution.
8) Implementation of long term biodiversity monitoring in Europe.

Results 1. Permanent observations and publication of yearbooks with geomagnetic and seismological data.
2. Publication of current meteorological yearbooks.
3. Analysis of ionospheric and atmospheric-electricity data
5. Magnetic anomaly maps of the southern part of Hansbreen and Tuvbreen.
6. GPS surveying on Hansbreen, Werenskioldbreen and Hornsbreen.
7. Spring and summer seasons measurements on Hansbreen.
8. Laser measurements of Hansbreen movement.

Geophysics

Geographical Area(s)
Sørkapp Land
Wedel Jarlsberg Land
Torell Land
Hornsund

Participants
Project Leader
Dr. Piotr Glowacki
Polish Academy of Sciences (PAS), Institute of Geophysics, Department of Polar and Marine Research
Warszawa, Poland

Field Leader
Dr. Krzysztof Migala
Polish Academy of Sciences (PAS), Institute of Geophysics
Warszawa, Poland
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Tenth Czech Glaciological Polar Expedition, Spitsbergen 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Glaciology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Czech</td>
</tr>
<tr>
<td>Institution</td>
<td>SPELEO - Rehak - Czech, Chuchelská 293, 513 01 Semily, Czech Republic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2004 to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td>Department of Geomorphology, University of Silesia, Poland; Department of Meteorology and Climatology University of Wroclaw, Poland; Institute of Botany Academy of Sciences of the Czech Republic;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuation of the examination of the Werenskioldbreen, Nanbreen, Hansbreen and Torellbreen as well as the Hornsund glaciers. A) Hydrology and hydrochemistry of meltwaters. B) Investigation of the glacier - karst phenomena (inglacial and subglacial drainage channels) by means of speleoglacial exploration. C) Mapping and documentation of glacier caves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
<th>Geographical Area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hornsund</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Leader</td>
</tr>
<tr>
<td>Dipl. Tech. Josef Rehak</td>
</tr>
<tr>
<td>Czech Speleological Society (SPELEO), Semily, Czech Republic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participating Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislav Rehak</td>
</tr>
<tr>
<td>Czech Speleological Society (SPELEO), Zelezny Brod, Czech Republic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participating Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szymon Kostka</td>
</tr>
<tr>
<td>ul., Wroclaw, Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipl. Tech. Josef Rehak</td>
</tr>
<tr>
<td>Czech Speleological Society (SPELEO), Semily, Czech Republic</td>
</tr>
</tbody>
</table>
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Ice ridges on the Barents Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Ice thermomechanics and ice morphology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian - Russian</td>
</tr>
<tr>
<td>Institution</td>
<td>UNIS</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>2002 to 2006</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td></td>
</tr>
<tr>
<td>Programme</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>We are investigating morphology and physico-mechanical properties of one or two ice ridges in the Barents Sea in May each year. We drill holes to examine the geometry and porosity of the ridge, we measure dimensions of the blocks in the sail, we sample and measure salinity, density, strength and ice texture of the ridge and the surrounding level ice. We also map the surface topography of the ridge.</td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Barents Sea</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Project Leader</td>
<td>Knut Vilhelm Høyland</td>
</tr>
<tr>
<td></td>
<td>University Centre on Svalbard (UNIS), Longyearbyen, Norway</td>
</tr>
<tr>
<td>Proj. Title</td>
<td>Sea ice formation and growth in the Van Mijen fjord</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Discipline</td>
<td>Ice thermomechanics and ice morphology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>UNIS</td>
</tr>
</tbody>
</table>

Proj. Period	2002 to 2006
Coop. Inst.	
Programme	
Description	
Results	Characterize the ice conditions in the Van Mijen fjord, small scale physico-mechanical properties and larger scale conditions
Geographical Area(s)	Nathorst Land Nordenskiöld Land

Participants	
Project Leader	Frank Nilsen
	University Centre on Svalbard (UNIS), Longyearbyen, Norway
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Ice physics and crystal structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Ice physics</td>
</tr>
<tr>
<td>Nationality</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Institution</td>
<td>Unis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj. Period</th>
<th>2002 to 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop. Inst.</td>
<td></td>
</tr>
<tr>
<td>Programme</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Geographical Area(s)</th>
<th>Nordskiöld Land</th>
<th>Sabine Land</th>
</tr>
</thead>
</table>

Participants

Project Leader

Knut Vilhelm Høyland
University Centre on Svalbard (UNIS), Longyearbyen, Norway
In 2003 the aim of the project is to study the seasonal variability of the radiative properties of tropospheric aerosols using FTIR emission spectroscopy. Furthermore, the height distribution of aerosols and their composition will be investigated. During intense campaigns the observations are performed by the project scientist. For the rest of the year the spectra are recorded within the NDSC activities by the NDSC-engineer at the station typically once per month.

Results

The measurements in 2002 were performed on a regular basis. The analysis was performed by a dedicated radiative transfer model from the Free University of Berlin. In 2002 we concentrated on the comparison of observations from the Arctic with similar observations from the Antarctica.

Geographical Area(s)

Ny-Ålesund

Participants

Project Leader

Dr. Justus Notholt
University of Bremen, Bremen, Germany

Prof. Otto Schrems
Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

Field Leader

Dr. Thorsten Warneke
University of Bremen, Institute of environmental physics, Bremen, Germany
Geophysics

<table>
<thead>
<tr>
<th>Proj. Title</th>
<th>Lomonosovfonna Ice Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discipline</td>
<td>Glaciology</td>
</tr>
<tr>
<td>Nationality</td>
<td>Swedish</td>
</tr>
<tr>
<td>Institution</td>
<td>Upsala University.</td>
</tr>
<tr>
<td>Proj. Period</td>
<td>1997 to 2004</td>
</tr>
<tr>
<td>Coop. Inst.</td>
<td>Norwegian Polar Institute</td>
</tr>
<tr>
<td>Programme</td>
<td>Lomonosovfonna Ice core Project</td>
</tr>
<tr>
<td>Description</td>
<td>Measuring ice motion and ice thickness on Lomonosovfonna outlets; Nordenskiöld-, Mittag-Leffler- and Grusdievebreen</td>
</tr>
<tr>
<td>Results</td>
<td>We have successfully recovered ice cores at Lomonosovfonna since 1997, and made ice dynamical measurements in order to understand the long term massbalance in the area. We also have monitored weather parameters using a climate device up at the summit.</td>
</tr>
<tr>
<td>Geographical Area(s)</td>
<td>Dickson Land</td>
</tr>
</tbody>
</table>

Participants

Project Leader

Ph.D. Veijo Pohjola
Upsala University, Dept. of Earth Sciences.
Uppsala, Sweden

Participating Scientist

Student Ann-Marie Berggren
Upsala University, Dept. Earth Sciences
Uppsala, Sweden
Geophysics

Participating Scientist

Student Peter Kuipers Munneke
Uppsala University, Dept. Earth Sciences.
Uppsala, Sweden

Participating Scientist

Consultant Anders Holmgren
,
, Sweden

Participating Scientist

Consultant Peter Sjøgren
,
, Sweden

Field Leader

Ph.D. Veijo Pohjola
Uppsala University, Dept. of Earth Sciences.
Uppsala, Sweden
Climate gas monitoring at the Zeppelin Station

High frequent measurements of the climate gases methane, carbon monoxide and halogenated hydrocarbons and aerosols at the Zeppelin Station.

Ny-Ålesund

Ove Hermansen
Norwegian Institute for Air Research (NILU), Kjeller, Norway

Dr. Norbert Schmidbauer
Norwegian Institute for Air Research (NILU), Kjeller, Norway

Chris Lunder
NILU, Kjeller, Norway
Appendix 1: Address List

The following pages contains name and address information for all researchers that have been registered in Research in Svalbard as active in 2004. The last column (“Page No.”) refers to the page number(s) in this report where the person is listed.

We try to keep our address register up to date and accurate. If the information is incorrect we appreciate if you notify us. Please send change of address or corrections to:

ssf@lby.npolar.no

or:

Research in Svalbard
Svalbard Science Forum
P.O. Box 506
N-9171 Longyearbyen
Norway
<table>
<thead>
<tr>
<th>Title</th>
<th>First name</th>
<th>Last name</th>
<th>Institution</th>
<th>Mat. Address</th>
<th>Postal Code</th>
<th>City</th>
<th>Country</th>
<th>Phone #</th>
<th>Fax #</th>
<th>Email</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.</td>
<td>Arild</td>
<td>Halske</td>
<td>NRC-QO, .</td>
<td>P.O. Box 146,</td>
<td>N-9810 AC</td>
<td>Tromsø,</td>
<td>The Netherlands</td>
<td>+47 91921244</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Knut</td>
<td>Hafren</td>
<td>Hayland</td>
<td>University Centre on Svalbard (UNIS),</td>
<td>P.O. Box 196,</td>
<td>N-9171</td>
<td>Longyearbyen,</td>
<td>Norway</td>
<td>+47 7780 3327</td>
<td>+47 7692 3301</td>
<td>87.87</td>
<td></td>
</tr>
<tr>
<td>Christa</td>
<td>Høiby</td>
<td>Hübner</td>
<td>University Centre on Svalbard (UNIS),</td>
<td>P.O. Box 196,</td>
<td>N-9171</td>
<td>Longyearbyen,</td>
<td>Norway</td>
<td>+47 7780 3327</td>
<td>+47 7692 3301</td>
<td>87.87</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Rolf A.</td>
<td>Ilm</td>
<td>University of Troms (UIT), Department of</td>
<td>N-9037</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7664 4767</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Mr.</td>
<td>Tristram</td>
<td>Irving-Fynn</td>
<td>University of Sheffield, Department of</td>
<td>Winter Street,</td>
<td>S10 2TN</td>
<td>Sheffield,</td>
<td>United Kingdom</td>
<td>+44 11422 7912</td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Dr.</td>
<td>Elisabeth</td>
<td>Isaksen</td>
<td>Norwegian Polar Institute (NPI),</td>
<td>Polar Environmental Centre,</td>
<td>N-9236</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7775 65</td>
<td>+47 7775 091</td>
<td>66.68</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Simon</td>
<td>Jean-Christophe</td>
<td>UMR NIRA/Arcacompex Rennes,</td>
<td>BP 65327,</td>
<td>F-35595</td>
<td>Le Rheu Cedex,</td>
<td>France</td>
<td>02 23 48 51 50</td>
<td>33 22 48 51</td>
<td>lomel@nima.fr</td>
<td>40</td>
</tr>
<tr>
<td>Dr.</td>
<td>Jane</td>
<td>Jøgensen</td>
<td>The Norwegian Polar Institute,</td>
<td>N-9236</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7775 65</td>
<td>+47 7775 091</td>
<td>66.68</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Prof.</td>
<td>Laurent</td>
<td>Joffret</td>
<td>Université Paris & Maine Côte d’Azur, Labo</td>
<td>UPMC-P6 Cas 129 T26 E14.1, place</td>
<td>F-76252</td>
<td>Paris Cedex 05,</td>
<td>France</td>
<td>+33 1 44 27 59 07</td>
<td>+33 1 44 27 59 05</td>
<td>laurent.joffret@univ-jo.</td>
<td>80</td>
</tr>
<tr>
<td>Dr.</td>
<td>Tarje</td>
<td>Jenssen</td>
<td>National Veterinary Institute,</td>
<td>N-9005</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7781 9250</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Prof.</td>
<td>Ingebjørg S.</td>
<td>Jønnsdottir</td>
<td>University Centre on Svalbard (UNIS),</td>
<td>P.O. Box 196,</td>
<td>N-9171</td>
<td>Longyearbyen,</td>
<td>Norway</td>
<td>+47 7792 3000</td>
<td>+47 7692 3301</td>
<td>9, 26, 66</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Ewen</td>
<td>Hjalmar</td>
<td>Norwegian Institute for Nature Research (NINA),</td>
<td>Environmental Centre,</td>
<td>N-9236</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7764 6791</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Dr.</td>
<td>Elen</td>
<td>Kielbasiak</td>
<td>University of Gröningen, Animal Ecology</td>
<td>P.O. Box 14,</td>
<td>NL-9700 AA</td>
<td>Haren</td>
<td>The Netherlands</td>
<td>+31 50 36 3205</td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Dr.</td>
<td>Kiel</td>
<td>Kaurist</td>
<td>Finnish Meteorological Institute,</td>
<td>Vuoooltaia 15A, P.O. Box 503</td>
<td>SF-00101</td>
<td>Helsinki,</td>
<td>Finland</td>
<td>+358 9 1929485</td>
<td>+358 9 1929483</td>
<td></td>
<td>25, 27</td>
</tr>
<tr>
<td>Dr.</td>
<td>Boguslaw</td>
<td>Kecik</td>
<td>Institute of geology,</td>
<td>16 Malow Pohrych street,</td>
<td>PL-61 606</td>
<td>Poznan</td>
<td>Poland</td>
<td>+48 801 89001</td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Dr.</td>
<td>Jan</td>
<td>Kohler</td>
<td>Norwegian Polar Institute (NPI),</td>
<td>Polar Environmental Centre,</td>
<td>N-9236</td>
<td>Tromsø</td>
<td>Norway</td>
<td>+47 7775 65</td>
<td>+47 7775 091</td>
<td>66.68</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Szymon</td>
<td>Kotek</td>
<td>ul.</td>
<td>Pl. 50-033</td>
<td>Wroclaw</td>
<td>Poland</td>
<td>+47 7775 65</td>
<td>+47 7775 091</td>
<td>66.68</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Dr.</td>
<td>Szymon</td>
<td>Kupers</td>
<td>University of Gröningen, Arctic Centre</td>
<td>P.O. Box 716,</td>
<td>NL-9700 AS</td>
<td>Gröningen</td>
<td>The Netherlands</td>
<td>+31 50 36 3205</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>Stud.</td>
<td>Peter</td>
<td>Kupers</td>
<td>University Dept. Earth Sciences,</td>
<td>uppala,</td>
<td>75236</td>
<td>Uppsala</td>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>PhD</td>
<td>Piotr</td>
<td>Kullenski</td>
<td>Institute of Oceanology,</td>
<td>ul. P. Stawarzewa Warszawy 95,</td>
<td>PL-81 712</td>
<td>Slupin</td>
<td>Poland</td>
<td>+48 59 54 6739</td>
<td>+48 59 56 384</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Dr.</td>
<td>Slawomir</td>
<td>Kwiatkowski</td>
<td>Polish Academy of Sciences (PAS),</td>
<td>Institute of</td>
<td>PL-81 712</td>
<td>Slupin</td>
<td>Poland</td>
<td>+48 59 54 6739</td>
<td>+48 59 56 384</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Dr.</td>
<td>Lubo</td>
<td>Labouse</td>
<td>Empresa de Tecnica de</td>
<td>UPMC-P6 Cas 129 T26 E14.1, place</td>
<td>F-76252</td>
<td>Paris Cedex 05,</td>
<td>France</td>
<td>+33 1 44 27 52 56</td>
<td>+33 1 44 27 52 55</td>
<td>lubrou@geigesu-fj.</td>
<td>80</td>
</tr>
<tr>
<td>Dr.</td>
<td>Dominique</td>
<td>Laffy</td>
<td>University of Paul, Department of Geography</td>
<td>UPN 911 CHRS, Avenue du Doyen</td>
<td>F-64000</td>
<td>Pau</td>
<td>France</td>
<td>+33 59 40 72 76</td>
<td>+33 59 40 72 75</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>Dr.</td>
<td>Betty</td>
<td>Lancaster</td>
<td>University of Southampton, Department of</td>
<td>SO17 1BJ</td>
<td>Hampshire</td>
<td>United Kingdom</td>
<td>+43 28097 0249</td>
<td>+43 28097 0248</td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Prof.</td>
<td>Leon</td>
<td>Ladauk</td>
<td>Alfred-Wegener-Instutute for P</td>
<td>D-27515</td>
<td>Bremerhaven</td>
<td>Germany</td>
<td>+49 471 4831 1149</td>
<td>+49 471 4831 1149</td>
<td></td>
<td>17, 12, 18</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Prof.</td>
<td>Lemke</td>
<td>Alfred-Wegener-Institute for</td>
<td>Bremerhaven</td>
<td>+49 471 4831 1151</td>
<td>+49 471 4831 1797</td>
<td>pl Lemke@awi-bremerhaven.de</td>
<td>17, 12, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Claude</td>
<td>Lepvrier</td>
<td>Alfred-Wegener-Institute for</td>
<td>P.O. Box 196,</td>
<td>F-76252</td>
<td>Paris Cedex 05,</td>
<td>France</td>
<td>+33 1 44 27 52 79</td>
<td>+33 1 44 27 52 85</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Dr.</td>
<td>Robert J.</td>
<td>Leitner</td>
<td>University of Windsor, Great Lakes Institute for</td>
<td>Ontario N9B 1B2</td>
<td>51 993 2500</td>
<td>Windsor</td>
<td>Canada</td>
<td>+41 519 3100 00</td>
<td>+41 519 3106</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Dr.</td>
<td>Elena</td>
<td>Lewandowski</td>
<td>Polish Academy of Sciences (PAS),</td>
<td>U. 0066, Bldom,</td>
<td>PL-01 062</td>
<td>Warszawa</td>
<td>Poland</td>
<td>+4 22 6195 764</td>
<td>+4 22 6195 764</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Dr.</td>
<td>Marek</td>
<td>Lichido</td>
<td>University of Wroclaw, Biological Institute</td>
<td>P.O. Box 1066,</td>
<td>N-1036</td>
<td>Oslo</td>
<td>Norway</td>
<td>+47 2285 4298</td>
<td>+47 2285 4298</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Dipl. B.</td>
<td>Thomas</td>
<td>Lie</td>
<td>Fraunhofer Institute for Biomedical Engineering (IBMT),</td>
<td>Invalidsplatz 42,</td>
<td>D-10115</td>
<td>Berlin</td>
<td>Germany</td>
<td>+43 40 2008 8350</td>
<td>+43 40 2008 8350</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Cand.</td>
<td>Marie</td>
<td>Lie</td>
<td>University Centre on Svalbard (UNIS),</td>
<td>P.O. Box 196,</td>
<td>N-9171</td>
<td>Longyearbyen,</td>
<td>Norway</td>
<td>+47 7692 3031</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Prof.</td>
<td>Jan</td>
<td>Linee</td>
<td>Alfred-Wegener-Institute for</td>
<td>Bremerhaven</td>
<td>+49 471 4831 1797</td>
<td>+49 471 4831 1797</td>
<td>jilie@awi-bremerhaven.de</td>
<td>27, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Maarten</td>
<td>Loonen</td>
<td>University of Gröningen,</td>
<td>State of New York University,</td>
<td>N-2027</td>
<td>Amsterdam</td>
<td>USA</td>
<td>+47 6839 8000</td>
<td>+47 6839 8000</td>
<td></td>
<td>27, 29</td>
</tr>
<tr>
<td>Prof.</td>
<td>Glenn</td>
<td>Lopez</td>
<td>University of Gröningen, Department of</td>
<td>P.O. Box 100,</td>
<td>80-958</td>
<td>Gdansk</td>
<td>Poland</td>
<td>+48 830 2241 2</td>
<td>+48 830 2241 2</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Univ. Prof.</td>
<td>Cornelius</td>
<td>Lutz</td>
<td>University of Limburg,</td>
<td>University of</td>
<td>A-6000</td>
<td>Innsbruck</td>
<td>Austria</td>
<td>+43 512 0727 21</td>
<td></td>
<td></td>
<td>107</td>
</tr>
</tbody>
</table>

Research in Svalbard 2004
List of Active Scientists
<table>
<thead>
<tr>
<th>Title</th>
<th>First name</th>
<th>Last name</th>
<th>Institution</th>
<th>Mail Address</th>
<th>Postal Code</th>
<th>City</th>
<th>Country</th>
<th>Phone #</th>
<th>Fax</th>
<th>E-mail</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.</td>
<td>Nicolas</td>
<td>Raba</td>
<td>Alfred Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven</td>
<td>D-27555 Bremerhaven Germany</td>
<td>+49 471 4831 1140</td>
<td>nikras@web.de</td>
<td>12, 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Jouke</td>
<td>Prop</td>
<td>Zoological Laboratory, PO Box 14, NL-9780 AA Haren</td>
<td></td>
<td></td>
<td></td>
<td>+31 363 3409</td>
<td>-31 363 5005</td>
<td>jouke.prop@wso.nl</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Thiery</td>
<td>Racicot</td>
<td>Centre National de la Recherche Scientifique (CNRS), Centre d’Ecologie et de Physiologie Environnementales (CEPE)</td>
<td>F-67007 Strasbourg Cedex 2 France</td>
<td>+33 881 6900</td>
<td></td>
<td></td>
<td></td>
<td>thiery.racicot@strasbourg.fr</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Nico</td>
<td>Raas</td>
<td>University of Gent, Institute for Nuclear Sciences, Proeftuinstraat 86, B-9000 Gent Belgium</td>
<td>32 9 36465 98 32 9 2646 66 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nico.Raas@UGent.be</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Mr.</td>
<td>Edgar</td>
<td>Rasmussen</td>
<td>NKS, Postbox 60, N-4001 Stavanger Norway</td>
<td>+47 51 85 87 00 47 51 85 87 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>en@stallart.no</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Dipl.</td>
<td>Josef</td>
<td>Rehak</td>
<td>Czech Speleological Society (SPELEO), Chuchelská 298, CZ-513 01 Samy</td>
<td>+42 31 239 77 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rehak.speleo@sez.cz</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Skalitzk</td>
<td>Rehak</td>
<td>Czech Speleological Society (SPELEO), Horákové Náměstí 74, CZ-191 37</td>
<td>+42 31 239 77 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mag.</td>
<td>Daril</td>
<td>Remias</td>
<td>University of Innsbruck, Institute of Botany, A-6030 Innsbruck Austria</td>
<td>0635512079395 +31 5120 72715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dean.remis@uib.ac.at</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Balley</td>
<td>Richard</td>
<td>Bjørknes Centre for Climate Research, Geophysical Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RichardBalley@ffu.unib</td>
<td>45</td>
</tr>
<tr>
<td>Cée</td>
<td>Rakel</td>
<td>Roll</td>
<td>Norwegian Polar Institute (NPI), O.P.Box 8265 Oslo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eki.rakel@npi.no</td>
<td>125</td>
</tr>
<tr>
<td>Prof.</td>
<td>Erik</td>
<td>Ropedal</td>
<td>Norwegian School of Veterinary Science, Department of Reproduction and Forensic Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>erik.ropedal@vet.no</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Hei</td>
<td>Roudli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hnuul@mappl.heimhi.de</td>
<td>55</td>
</tr>
<tr>
<td>MSc.</td>
<td>Jacky</td>
<td>Rozanski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jacky.sro@eslka.com</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Jan</td>
<td>Runneg</td>
<td>Norges geologisk undersøkelse, Avenida Vídeig Sæland 399, AR-5000 Cótoba</td>
<td>+53 351 421 2100 53 351 422 2197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nhade@corn.unl.edu</td>
<td>17, 19, 21</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Ricardo</td>
<td>Sahade</td>
<td>University of Trondheim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christian</td>
<td>Schieber</td>
<td>University of Bremen, Department of Geology, Klargartenstrasse, D-28333 Bremen Germany</td>
<td>+49 421 2184 506 49 421 2184 515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>scheibm@uni-bremen.de</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Otto</td>
<td>Scherms</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), P.O.Box 12 0161, D-27515 Bremerhaven Germany</td>
<td>+47 39 288 215 47 389 288 215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mscherms@awi.de</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axel</td>
<td>Schultz</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), Research Department Potsdam</td>
<td>P.O.Box 60 149, D-14473 Potsdam Germany</td>
<td>+49 31 288 2167</td>
<td>31 288 2167</td>
<td></td>
<td></td>
<td>aschult@awi-potsdam.de</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Tom</td>
<td>Victor</td>
<td>Segalstad</td>
<td>University of Oslo (UiO), Mineralogical-Geological Museum</td>
<td>P.O.Box 1172 Blindern, N-0318 Oslo</td>
<td>47 228 1662 47 228 1665</td>
<td></td>
<td></td>
<td></td>
<td>t.segalstad@geo.uio.no</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Dominique</td>
<td>Seliger</td>
<td>University of Nantes, Institute of Geography Rue de la Service du terr, P.O.Box 8227, F-44112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dominique.seliger@univ-nantes.fr</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Shubert</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research (AWI), Bremerhaven</td>
<td>P.O.Box 120161, D-27515 Bremerhaven Germany</td>
<td>+49 471 4831 1149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dshubert@awi.de</td>
<td>17, 19, 21</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Sofie</td>
<td>Søgaard</td>
<td>University of Aarhus, Plant and Soil Science Crundsholm Building, St. Machar Drive</td>
<td>AB 349 UU Aberdeen United Kingdom</td>
<td>+44 1224 272688 44 1224 272703</td>
<td></td>
<td></td>
<td></td>
<td>ssa@ahc.ac.uk</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Consultant</td>
<td>Peter</td>
<td>Sjoblom</td>
<td>Nicholas Copernicus University, Institute of Biology Gagasr 9, PL-87-100 Torun</td>
<td>+46 18 3359435</td>
<td>46 18 3359435</td>
<td>peter.sjoblom@nau.ens.toruni.pl</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Ireneusz</td>
<td>Sobkow</td>
<td>University of Turin (UIT), Institute of Biology Gagasr 9, PL-87-100 Torun</td>
<td>+47 764 4424 76 744 633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>isobkow@unito.it</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Bjorn</td>
<td>Soloyanova</td>
<td>Arctic and Antarctic Research Institute (AARI), Russia 99,Bering str., 199 199</td>
<td>+7 41 32 203209</td>
<td>7818 132 2699</td>
<td>i.solo@rambler.ru</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc.</td>
<td>Marek</td>
<td>Stibal</td>
<td>University of South Bohemia, Faculty of Biological Sciences, 391 Bering str., 199 199</td>
<td>+7 49 132 32039</td>
<td>7818 132 2699</td>
<td>i.solo@rambler.ru</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Audun</td>
<td>Stian</td>
<td>University of Tromsø (UiT), Institute of Biology Breivika, N-9037 Tromsø Norway</td>
<td>+47 764 4509 76 756 4509</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i.stian@uit.no</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Johan</td>
<td>Strøm</td>
<td>University of Stockholm, Institute of Applied Environmental Research Frescativägen 54, S-10691 Stockholm Sweden</td>
<td>+46 647 62787</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>johanf.strom@univie.at</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Kristian</td>
<td>Sundblad</td>
<td>Norwegian University of Science and Technology (NTNU), Institute of Geology, N-7034 Trondheim Norway</td>
<td>+47 759 4809</td>
<td>47 759 4814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Harald</td>
<td>Svendsen</td>
<td>University of Bergen (UiB), Department of Geophysics Allégaten 70, N-5007 Bergen Norway</td>
<td>+47 5584 2664 47 5584 2653</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>harald.svendsen@uib.no</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Dr.</td>
<td>Tadeusz</td>
<td>Wysoka</td>
<td>University of Gdańsk, Department of Geoinformatics, Poc. Box, 284, PL-80-368 Gdańsk 90 Poland</td>
<td>+48 58 590 2241 ext. 357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wysoka@bioc.ch.univ.gda.pl</td>
<td>68</td>
</tr>
<tr>
<td>Dr.</td>
<td>Ewa</td>
<td>Tamara</td>
<td>Institute of geology, 16 Maloye Polochy str., PL-61-606 Poznan Poland</td>
<td>+48 819 260001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skorp@amu.edu.pl</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Gérard</td>
<td>Thuillier</td>
<td>Service d’Astronomie du CNRS, B.P. 3, F-95171 Villeurbanne</td>
<td>+31 416 472804 31 416 472804</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gar.gerard@uca.eu</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Mikael</td>
<td>Trefilov</td>
<td>Arctic and Antarctic Research Institute (AARI), Russia 29,Bering str., 391</td>
<td>+7 41 32 203209</td>
<td>7818 132 2699</td>
<td>trefilov@rambler.ru</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Morten</td>
<td>Tryland</td>
<td>University of Tromsø, Department of Arctic Veterinary Medicine, Norway 99, Tromsø Norway</td>
<td>+47 7766 5400 77 766 4111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>monten.tryland@fmgut.no</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Richard</td>
<td>Ubele</td>
<td>University of Göteborg, Arctic Centre P.O.Box 760, NL-9700 A Göteborg, The Netherlands</td>
<td>+31 50 363 6851 31 50 363 6851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ubele.kb@uio.no</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Dr.</td>
<td>Erik</td>
<td>Vann</td>
<td>NIOO-CCL, NL-3631 AC Nieuwkoop</td>
<td>+31 294 23 93 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>evarlands@nioo.knaw.nl</td>
<td>29</td>
</tr>
<tr>
<td>Dr.</td>
<td>Garben</td>
<td>van Groet</td>
<td>NIOO-CCL, NL-3631 AC Nieuwkoop</td>
<td>+31 294 23 93 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gavgeben@nioo.knaw.nl</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Vermeulen</td>
<td>Norwegian polarist, Polarnforsenteret, N-9296 Tromsø Norway</td>
<td>+47 77 75 05 42 77 75 05 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jonathan@npolar.no</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>First name</td>
<td>Last name</td>
<td>Institution</td>
<td>Mail Address</td>
<td>Postal Code</td>
<td>City</td>
<td>Country</td>
<td>Phone #</td>
<td>Fax #</td>
<td>Email</td>
<td>Page no.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Stud.</td>
<td>Maaske</td>
<td>Versteegh</td>
<td>University of Groningen, Animal Ecology CEES</td>
<td>P.O.Box 14, NL-9700 AA</td>
<td>Nijmegen, The Netherlands</td>
<td>0031-6 136 7902</td>
<td>+31 50 363 4000</td>
<td>maaske@stud.uu.nl</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr.</td>
<td>Daan</td>
<td>Vrugdenhil</td>
<td>University of Groningen, Arctic Centre</td>
<td>P.O.Box 7 6, NL-9700 AB</td>
<td>Groningen, The Netherlands</td>
<td>0031-6 136 7902</td>
<td>+31 50 363 4000</td>
<td>daan.vrugdenhil@stud.uu.nl</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr.</td>
<td>Jorrit</td>
<td>Walter</td>
<td>Stockholm University, Institute of Applied Environmental Research</td>
<td>P.O.Box 200, SE-106 91</td>
<td>Stockholm, Sweden</td>
<td>+46 8 747 7408</td>
<td>+46 8 677 7325</td>
<td>jorrit.walter@itt.su.se</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Emmanuelle</td>
<td>Baratka</td>
<td>University of Bremen, Institute of environmental physis</td>
<td>P.O.Box 30440, D-28334</td>
<td>Breman, Germany</td>
<td>+49 421 218 9617</td>
<td>+49 421 218 9617</td>
<td>emmanuelle.baratka@ubp.physik.uni-bremen.de</td>
<td>97, 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Dr. Jan</td>
<td>Martin</td>
<td>Institute of Fishery Sciences</td>
<td>ul.Powstaniec Warszawy 55, PL-81-712</td>
<td>Sopot, Poland</td>
<td>+48 58 551 21 83</td>
<td>+48 58 551 21 83</td>
<td>waslaw@wp.mgp.pwn.pl</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Walter</td>
<td>Wheeler</td>
<td>University of Bergen, Center for Integrated Petroleum Research</td>
<td>Allegaten 41, N-5007</td>
<td>Bergen, Norway</td>
<td>+47 90 20 7999</td>
<td>+47 90 20 7999</td>
<td>walter.wheeler@ciper.ub.no</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof.</td>
<td>Christian</td>
<td>Wille</td>
<td>Alfred Wegener-Institute for Polar and Marine Research, AWI, Am Handelskai 12, D-27570</td>
<td>Bremerhaven, Germany</td>
<td>+49 471 4831 1338</td>
<td>+49 471 4831 1338</td>
<td>oakende@awi-bremerhaven.de</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipl.</td>
<td>Christian</td>
<td>Wille</td>
<td>Alfred Wegener-Institute for Polar and Marine Research (AWI), Research Department Potsdam</td>
<td>P.O.Box 600 149, D-14473</td>
<td>Potsdam, Germany</td>
<td>+49 331 288 2173</td>
<td>+49 331 288 2173</td>
<td>oakende@awi-potsdam.de</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Jan-Gunmar</td>
<td>Winther</td>
<td>Norwegian Polar Institute (NPI), Polar Environmental Centre,</td>
<td>P.O. box 284, PL-80-168</td>
<td>Gdansk 50, Poland</td>
<td>+48 58 30 12241</td>
<td>+48 58 30 12241</td>
<td>j.g.winter@polarni.no</td>
<td>47, 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Barbara</td>
<td>Winteirnska</td>
<td>Department of Genetics Wolsak</td>
<td>Institute of Oceanology, P.A.S.</td>
<td>ul.Powstaniec Warszawy 55, PL-80-168</td>
<td>Gdansk 50, Poland</td>
<td>+48 58 30 12241</td>
<td>+48 58 30 12241</td>
<td>basia@oist.edu</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Maria</td>
<td>Wodarska - Kowalczyk</td>
<td>Institute of Oceanology, P.A.S.</td>
<td>ul.Powstaniec Warszawy 55, PL-80-168</td>
<td>Gdansk 50, Poland</td>
<td>+48 58 30 12241</td>
<td>+48 58 30 12241</td>
<td>basia@oist.edu</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Anette</td>
<td>Wold</td>
<td>Norwegian Polar Institute (NPI), Polar Environmental Centre,</td>
<td>N-8360</td>
<td>Tromsø, Norway</td>
<td>+47 7775 0621</td>
<td>+47 7775 0621</td>
<td>swolden@polarni.no</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Hans</td>
<td>Wolters</td>
<td>Norwegian Polar Institute (NPI), Polar Environmental Centre,</td>
<td>N-8360</td>
<td>Tromsø, Norway</td>
<td>+47 7775 0621</td>
<td>+47 7775 0621</td>
<td>swolden@polarni.no</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Sarah</td>
<td>Woodin</td>
<td>Aberdeen University, Department of Plant and Soil Science</td>
<td>AB9 2UE</td>
<td>Aberdeen, United Kingdom</td>
<td>+44 122 427 3688</td>
<td>+44 122 427 3688</td>
<td>swoodin@abdn.ac.uk</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Nigel G.</td>
<td>Yoccoz</td>
<td>Norwegian Polar Institute (NPI)</td>
<td>ul.Powstaniec Warszawy 55, PL-80-168</td>
<td>Gdansk 50, Poland</td>
<td>+48 58 30 12241</td>
<td>+48 58 30 12241</td>
<td>j.yoccoz@polarni.no</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Marek</td>
<td>Zajaczkowski</td>
<td>Polish Academy of Sciences (PAS), Institute of Oceanology, Arctic Ecology Group</td>
<td>ul.Powstaniec Warszawy 55, PL-80-168</td>
<td>Gdansk 50, Poland</td>
<td>+48 58 30 12241</td>
<td>+48 58 30 12241</td>
<td>j.yoccoz@polarni.no</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Ursular</td>
<td>Zeltner</td>
<td>Martin Luther University, Halle, Institute of Pathophysiology, Weinbergweg 10, D-06120</td>
<td>Halle/Saale, Germany</td>
<td>0049 345 5626252</td>
<td>+49 345 5626252</td>
<td>zeltner@pflanzenphysik.uni-halle.de</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>René</td>
<td>van der Wall</td>
<td>Centre for Ecology and Hydrology, Hill of Brathens, AB31 4SW</td>
<td>Banchory, United Kingdom</td>
<td>+44 1330 826337</td>
<td>+44 1330 826337</td>
<td>rdv@oeh.co.uk</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr.</td>
<td>Jon Berne</td>
<td>Ørsted</td>
<td>Norwegian Polar Institute (NPI), Norwegian Polar Institute (NPI),</td>
<td>P.O.Box 528, N-9171</td>
<td>Longyearbyen, Norway</td>
<td>+44 1330 826337</td>
<td>+44 1330 826337</td>
<td>pe@polarni.no</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stg</td>
<td>Ørsted</td>
<td>Østfold</td>
<td>Norwegian Hydrographic Service (NHS),</td>
<td>P.O.Box 60, N-4001</td>
<td>Stavanger, Norway</td>
<td>+47 5185 8700</td>
<td>+47 5185 8700</td>
<td>so@stat.sno.no</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23.08.2004
Appendix 2: RiS’ Geographic Zones

1. Sørkapp Land
2. Wedel Jarlsberg Land
3. Torell Land
4. Nathorst Land
5. Heer Land
6. Nordenskiöld Land
7. Sabine Land
8. Prins Karls Forland
9. Oscar II Land
10. James I Land
11. Dickson Land
12. Bünsow Land
13. Olav V Land
14. Albert I Land
15. Haakon VII Land
16. Andrée Land
17. Ny-Friesland
18. Gustav V Land
19. Prins Oscars Land
20. Orvin Land
21. Gustav Adolf Land
22. Austfonna
23. Barentsøya
24. Edgeøya
25. Kvitøya
26. Kong Karls Land
27. Hopen
28. Bjørnøya
29. Longyearbyen
30. Ny-Ålesund
31. Hornsund
32. Sveagruva
33. Barentsburg
34. Pyramiden

- Numbers on the map refer to the list of names next to the map.
- Hatched areas represent the major protected areas.