


# **EPIMARK and EPISELECT – My two PoC grants**

Jorge Fernandes
Nord University, Norway
8 February 2024

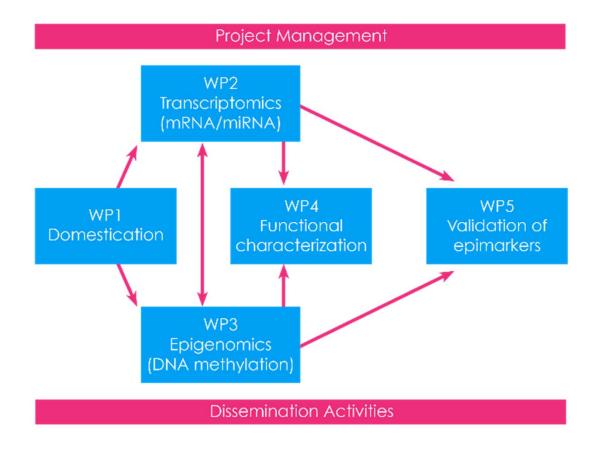






# Innovative Epigenetic Markers for Fish Domestication




**ERC Consolidator grant** 2016-2021



FRIPRO TOPPFORSK 2016-2021



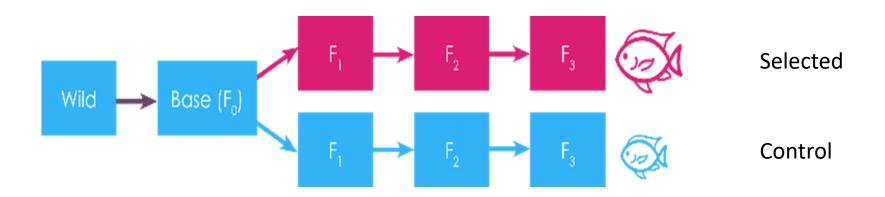
## EPIFISH uses a multidisciplinary approach to study domestication at its research frontier







## **Collecting wild Nile tilapia in Luxor (Egypt)**

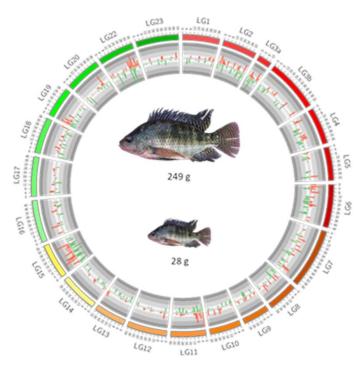




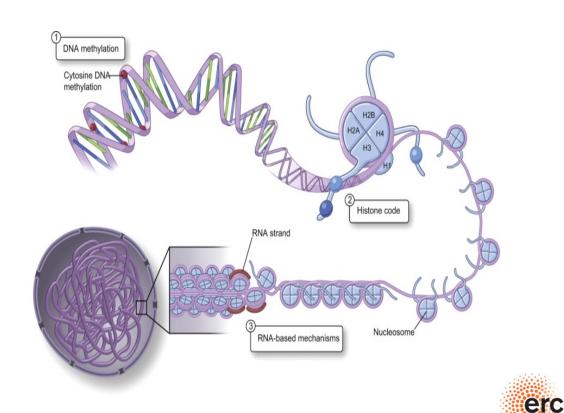





### Our small-scale domestication program




- ✓ Wild tilapia from Egypt were used to establish a base population F<sub>0</sub>
- ✓ These families have been selected for improved growth for three generations






# EPIFISH has discovered epigenetic changes associated with growth



Differentially methylated cytosines across the Nile tilapia genome between large and small males



European Research Council

#### The idea and technology gap underlying my first ERC PoC

- ✓ To date, selective breeding programmes are based exclusively on genetic markers, overlooking the fact that epigenetics may account for a large proportion of the observed phenotypic variation
- ✓ IAM (Nord TTO and Konsert) identified several technology assets with innovation potential

We need to improve the selection of fish in breeding programmes based on growth potential (a commercially relevant trait), thereby increasing the yield of production and leading to more sustainable aquaculture

### **Epigenetic markers**

- ✓ An epigenetic biomarker (epimarker) is an epigenetic mark or altered epigenetic mechanism (e.g, DNA methylation) that can be quantified and used to predict or identify a phenotype
- ✓ Epimarkers have the advantage of reflecting past environmental interactions
- ✓ Demonstrated potential in preventive medicine (e.g, cancer, cardiovascular disease and preterm birth)











#### The POC application

- ✓ Exciting to write a proposal for a translational project
- ✓ Clear high-risk/high-gain idea -> develop the first kit of epigenetic marks associated with growth in fish (Nile tilapia)

- √ TTO/ Consulting company
- ✓ Industry partners







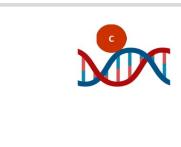
### **EPIMARK**

# Commercial feasibility of a kit for the identification of epigenetic markers in farmed fish



**ERC Proof of Concept** 

1,500 EUR


2018-2020 (18 months)

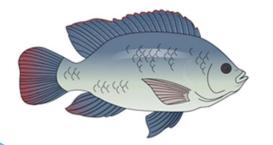
### **EPIMARK – Plan of activities**

| Activity                   | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13 | M14 | M15 | M16 | M17 | M18 |
|----------------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1a - 5mC/5hmC              |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 1a - miRNA                 |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 1b - Web tool              |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 1c - SOP                   |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 2a - IP analysis           |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 2b - Patent strategy       |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 3 - Commercial feasibility |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |
| 4 - Business development   |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |



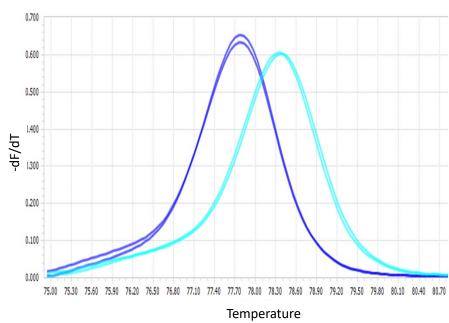
# High-resolution melting (HRM) qPCR can be used to quantify methylation levels



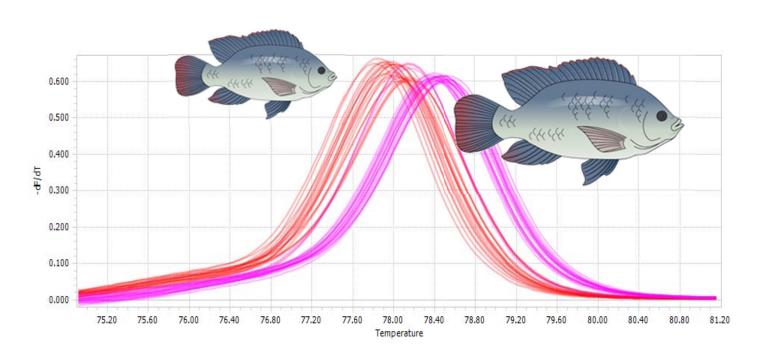


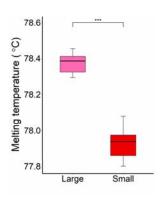



Bisulfite treatment






Normalized melting peaks



# Independent validation confirmed differential methylation between slow- and fast-growers





Normalized melting peaks from 40 F2 individuals



### The second POC application

- ✓ Further validation of the epigenetic markers (e.g., stability and inheritance)
- ✓ New component -> include an additional type of marker
- ✓ Multi-species application





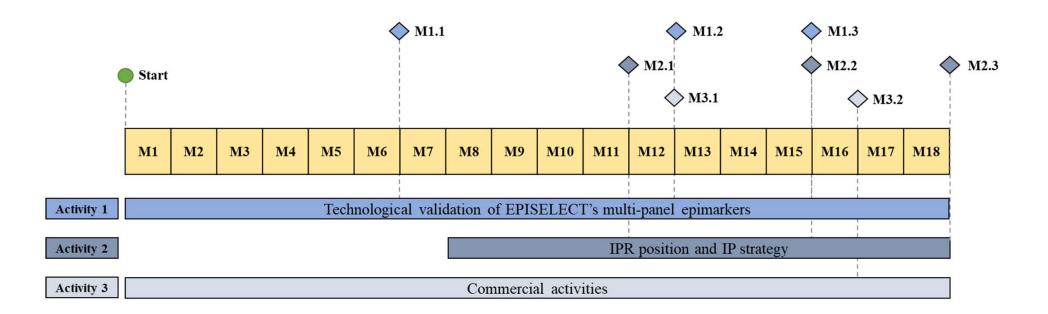
**EPISELECT** 





## **EPISELECT**

# Feasibility of a multi-panel of epigenetic markers of fish growth




**ERC Proof of Concept** 

1,500 EUR

2023-2024 (18 months)

#### **EPISELECT timeline**





### My experience with the POC applications

✓ Very positive experience both with the application and implementation of the project -> administrative assistance fror the ERC

- √ Simplified budget
- ✓ Fair and fast evaluation from 5 expert reviewers
- ✓ Excellent opportunity to explore the commercial innovation potential in my ERC CoG



## **Acknowledgements**

















www.jmofernandes.com